9 33: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n55]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 72: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{12}-4 q^{11}+3 q^{10}+11 q^9-25 q^8+6 q^7+43 q^6-59 q^5-3 q^4+86 q^3-83 q^2-22 q+115-83 q^{-1} -39 q^{-2} +113 q^{-3} -60 q^{-4} -46 q^{-5} +83 q^{-6} -27 q^{-7} -37 q^{-8} +40 q^{-9} -4 q^{-10} -17 q^{-11} +10 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{24}-4 q^{23}+3 q^{22}+7 q^{21}-5 q^{20}-20 q^{19}+7 q^{18}+53 q^{17}-14 q^{16}-96 q^{15}-q^{14}+166 q^{13}+34 q^{12}-247 q^{11}-94 q^{10}+326 q^9+179 q^8-392 q^7-276 q^6+430 q^5+382 q^4-452 q^3-460 q^2+431 q+536-407 q^{-1} -567 q^{-2} +342 q^{-3} +595 q^{-4} -282 q^{-5} -577 q^{-6} +193 q^{-7} +550 q^{-8} -111 q^{-9} -486 q^{-10} +23 q^{-11} +411 q^{-12} +38 q^{-13} -312 q^{-14} -82 q^{-15} +214 q^{-16} +97 q^{-17} -131 q^{-18} -83 q^{-19} +64 q^{-20} +61 q^{-21} -25 q^{-22} -36 q^{-23} +7 q^{-24} +17 q^{-25} -2 q^{-26} -5 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{40}-4 q^{39}+3 q^{38}+7 q^{37}-9 q^{36}-19 q^{34}+27 q^{33}+46 q^{32}-47 q^{31}-34 q^{30}-99 q^{29}+113 q^{28}+237 q^{27}-73 q^{26}-189 q^{25}-438 q^{24}+202 q^{23}+752 q^{22}+180 q^{21}-384 q^{20}-1285 q^{19}-56 q^{18}+1494 q^{17}+1012 q^{16}-227 q^{15}-2483 q^{14}-948 q^{13}+1963 q^{12}+2229 q^{11}+557 q^{10}-3454 q^9-2208 q^8+1822 q^7+3236 q^6+1682 q^5-3797 q^4-3254 q^3+1225 q^2+3666 q+2665-3560 q^{-1} -3782 q^{-2} +478 q^{-3} +3546 q^{-4} +3288 q^{-5} -2904 q^{-6} -3814 q^{-7} -316 q^{-8} +2982 q^{-9} +3566 q^{-10} -1903 q^{-11} -3396 q^{-12} -1092 q^{-13} +2012 q^{-14} +3422 q^{-15} -701 q^{-16} -2498 q^{-17} -1596 q^{-18} +806 q^{-19} +2717 q^{-20} +288 q^{-21} -1290 q^{-22} -1506 q^{-23} -172 q^{-24} +1590 q^{-25} +641 q^{-26} -268 q^{-27} -904 q^{-28} -513 q^{-29} +584 q^{-30} +423 q^{-31} +161 q^{-32} -298 q^{-33} -342 q^{-34} +97 q^{-35} +119 q^{-36} +137 q^{-37} -33 q^{-38} -111 q^{-39} +2 q^{-40} +4 q^{-41} +38 q^{-42} +5 q^{-43} -20 q^{-44} +2 q^{-45} -3 q^{-46} +5 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math>|J5=<math>q^{60}-4 q^{59}+3 q^{58}+7 q^{57}-9 q^{56}-4 q^{55}+q^{54}+q^{53}+20 q^{52}+23 q^{51}-37 q^{50}-72 q^{49}-21 q^{48}+71 q^{47}+165 q^{46}+111 q^{45}-130 q^{44}-403 q^{43}-335 q^{42}+213 q^{41}+781 q^{40}+791 q^{39}-80 q^{38}-1353 q^{37}-1752 q^{36}-338 q^{35}+2021 q^{34}+3150 q^{33}+1461 q^{32}-2440 q^{31}-5175 q^{30}-3440 q^{29}+2350 q^{28}+7426 q^{27}+6404 q^{26}-1275 q^{25}-9570 q^{24}-10233 q^{23}-936 q^{22}+11121 q^{21}+14476 q^{20}+4271 q^{19}-11655 q^{18}-18631 q^{17}-8472 q^{16}+11117 q^{15}+22129 q^{14}+12986 q^{13}-9472 q^{12}-24715 q^{11}-17328 q^{10}+7175 q^9+26127 q^8+21050 q^7-4385 q^6-26648 q^5-23971 q^4+1744 q^3+26187 q^2+25992 q+943-25297 q^{-1} -27295 q^{-2} -3159 q^{-3} +23779 q^{-4} +27888 q^{-5} +5437 q^{-6} -22014 q^{-7} -28057 q^{-8} -7391 q^{-9} +19688 q^{-10} +27652 q^{-11} +9544 q^{-12} -16995 q^{-13} -26787 q^{-14} -11484 q^{-15} +13655 q^{-16} +25228 q^{-17} +13403 q^{-18} -9926 q^{-19} -22943 q^{-20} -14763 q^{-21} +5780 q^{-22} +19810 q^{-23} +15547 q^{-24} -1769 q^{-25} -15968 q^{-26} -15251 q^{-27} -1851 q^{-28} +11622 q^{-29} +13979 q^{-30} +4553 q^{-31} -7333 q^{-32} -11671 q^{-33} -6070 q^{-34} +3483 q^{-35} +8777 q^{-36} +6375 q^{-37} -573 q^{-38} -5803 q^{-39} -5601 q^{-40} -1207 q^{-41} +3155 q^{-42} +4243 q^{-43} +1950 q^{-44} -1262 q^{-45} -2742 q^{-46} -1861 q^{-47} +121 q^{-48} +1473 q^{-49} +1388 q^{-50} +352 q^{-51} -621 q^{-52} -844 q^{-53} -406 q^{-54} +176 q^{-55} +411 q^{-56} +280 q^{-57} +19 q^{-58} -170 q^{-59} -161 q^{-60} -31 q^{-61} +56 q^{-62} +52 q^{-63} +33 q^{-64} -7 q^{-65} -33 q^{-66} -7 q^{-67} +8 q^{-68} + q^{-69} +3 q^{-70} +3 q^{-71} -5 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{84}-4 q^{83}+3 q^{82}+7 q^{81}-9 q^{80}-4 q^{79}-3 q^{78}+21 q^{77}-6 q^{76}-3 q^{75}+33 q^{74}-65 q^{73}-46 q^{72}-3 q^{71}+130 q^{70}+86 q^{69}+26 q^{68}+45 q^{67}-372 q^{66}-385 q^{65}-122 q^{64}+585 q^{63}+755 q^{62}+634 q^{61}+286 q^{60}-1502 q^{59}-2193 q^{58}-1601 q^{57}+1143 q^{56}+3197 q^{55}+4151 q^{54}+3071 q^{53}-2969 q^{52}-7713 q^{51}-8728 q^{50}-2120 q^{49}+6490 q^{48}+14254 q^{47}+15272 q^{46}+1604 q^{45}-15319 q^{44}-26770 q^{43}-19157 q^{42}+1159 q^{41}+28074 q^{40}+43332 q^{39}+25450 q^{38}-12018 q^{37}-50779 q^{36}-56897 q^{35}-28710 q^{34}+29035 q^{33}+79230 q^{32}+74624 q^{31}+19753 q^{30}-60527 q^{29}-103623 q^{28}-86828 q^{27}-817 q^{26}+99561 q^{25}+133075 q^{24}+80365 q^{23}-38506 q^{22}-133685 q^{21}-152968 q^{20}-58309 q^{19}+88047 q^{18}+173726 q^{17}+146686 q^{16}+9390 q^{15}-132607 q^{14}-200071 q^{13}-119348 q^{12}+52288 q^{11}+184020 q^{10}+193635 q^9+60262 q^8-108722 q^7-218005 q^6-162501 q^5+12510 q^4+172178 q^3+214259 q^2+97330 q-78957-214818 q^{-1} -184164 q^{-2} -19189 q^{-3} +151725 q^{-4} +216694 q^{-5} +120052 q^{-6} -51346 q^{-7} -201224 q^{-8} -192445 q^{-9} -44618 q^{-10} +127353 q^{-11} +209410 q^{-12} +136239 q^{-13} -22434 q^{-14} -179367 q^{-15} -193704 q^{-16} -70883 q^{-17} +94486 q^{-18} +192292 q^{-19} +149869 q^{-20} +13884 q^{-21} -143716 q^{-22} -185196 q^{-23} -99105 q^{-24} +48156 q^{-25} +158360 q^{-26} +154703 q^{-27} +55581 q^{-28} -90163 q^{-29} -157590 q^{-30} -118833 q^{-31} -6329 q^{-32} +103658 q^{-33} +138130 q^{-34} +87871 q^{-35} -26967 q^{-36} -106483 q^{-37} -114093 q^{-38} -50107 q^{-39} +38832 q^{-40} +95210 q^{-41} +92289 q^{-42} +23687 q^{-43} -44665 q^{-44} -80241 q^{-45} -63304 q^{-46} -11723 q^{-47} +40900 q^{-48} +65843 q^{-49} +41954 q^{-50} +2172 q^{-51} -34698 q^{-52} -45436 q^{-53} -29796 q^{-54} +1254 q^{-55} +28461 q^{-56} +30486 q^{-57} +18440 q^{-58} -2915 q^{-59} -17972 q^{-60} -21421 q^{-61} -11473 q^{-62} +3842 q^{-63} +11205 q^{-64} +12832 q^{-65} +6416 q^{-66} -1467 q^{-67} -7641 q^{-68} -7524 q^{-69} -2882 q^{-70} +764 q^{-71} +4009 q^{-72} +3883 q^{-73} +2079 q^{-74} -915 q^{-75} -2121 q^{-76} -1606 q^{-77} -1015 q^{-78} +333 q^{-79} +916 q^{-80} +1000 q^{-81} +220 q^{-82} -212 q^{-83} -266 q^{-84} -391 q^{-85} -127 q^{-86} +60 q^{-87} +215 q^{-88} +65 q^{-89} +7 q^{-90} +12 q^{-91} -63 q^{-92} -34 q^{-93} -12 q^{-94} +36 q^{-95} +2 q^{-96} -6 q^{-97} +11 q^{-98} -6 q^{-99} -3 q^{-100} -3 q^{-101} +5 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math>|J7=<math>q^{112}-4 q^{111}+3 q^{110}+7 q^{109}-9 q^{108}-4 q^{107}-3 q^{106}+17 q^{105}+14 q^{104}-29 q^{103}+7 q^{102}+5 q^{101}-39 q^{100}-18 q^{99}+4 q^{98}+111 q^{97}+132 q^{96}-62 q^{95}-86 q^{94}-180 q^{93}-291 q^{92}-86 q^{91}+121 q^{90}+684 q^{89}+935 q^{88}+297 q^{87}-399 q^{86}-1462 q^{85}-2136 q^{84}-1371 q^{83}+160 q^{82}+2973 q^{81}+5199 q^{80}+4209 q^{79}+933 q^{78}-5092 q^{77}-10410 q^{76}-10542 q^{75}-5481 q^{74}+6189 q^{73}+18797 q^{72}+23424 q^{71}+16832 q^{70}-3684 q^{69}-29195 q^{68}-44109 q^{67}-40107 q^{66}-9504 q^{65}+36910 q^{64}+73834 q^{63}+81192 q^{62}+41025 q^{61}-34268 q^{60}-107299 q^{59}-141435 q^{58}-101281 q^{57}+7287 q^{56}+134706 q^{55}+219360 q^{54}+196159 q^{53}+56536 q^{52}-139663 q^{51}-302390 q^{50}-324942 q^{49}-169637 q^{48}+103593 q^{47}+373033 q^{46}+477633 q^{45}+333623 q^{44}-11592 q^{43}-408448 q^{42}-633728 q^{41}-539777 q^{40}-143541 q^{39}+388993 q^{38}+768599 q^{37}+768535 q^{36}+354914 q^{35}-304353 q^{34}-858018 q^{33}-992330 q^{32}-604378 q^{31}+155533 q^{30}+886693 q^{29}+1185063 q^{28}+865421 q^{27}+41939 q^{26}-850809 q^{25}-1325913 q^{24}-1110482 q^{23}-265534 q^{22}+759123 q^{21}+1406486 q^{20}+1316820 q^{19}+489369 q^{18}-628897 q^{17}-1428674 q^{16}-1472214 q^{15}-692247 q^{14}+481739 q^{13}+1404365 q^{12}+1573547 q^{11}+859516 q^{10}-335270 q^9-1348375 q^8-1628437 q^7-987518 q^6+204023 q^5+1277395 q^4+1646488 q^3+1077731 q^2-92091 q-1201173-1641850 q^{-1} -1140218 q^{-2} +335 q^{-3} +1128107 q^{-4} +1623094 q^{-5} +1182743 q^{-6} +78632 q^{-7} -1056484 q^{-8} -1598273 q^{-9} -1217127 q^{-10} -151677 q^{-11} +984896 q^{-12} +1568187 q^{-13} +1247728 q^{-14} +228507 q^{-15} -904233 q^{-16} -1531416 q^{-17} -1279794 q^{-18} -315323 q^{-19} +808575 q^{-20} +1481362 q^{-21} +1310013 q^{-22} +416318 q^{-23} -688591 q^{-24} -1410389 q^{-25} -1334094 q^{-26} -530059 q^{-27} +541117 q^{-28} +1308914 q^{-29} +1340844 q^{-30} +650820 q^{-31} -364860 q^{-32} -1170292 q^{-33} -1319360 q^{-34} -765645 q^{-35} +167085 q^{-36} +990462 q^{-37} +1256627 q^{-38} +859423 q^{-39} +40157 q^{-40} -774451 q^{-41} -1145254 q^{-42} -913617 q^{-43} -236456 q^{-44} +533062 q^{-45} +982955 q^{-46} +914623 q^{-47} +400916 q^{-48} -286916 q^{-49} -779577 q^{-50} -854456 q^{-51} -512171 q^{-52} +60416 q^{-53} +551937 q^{-54} +736826 q^{-55} +558450 q^{-56} +122500 q^{-57} -326102 q^{-58} -577412 q^{-59} -537227 q^{-60} -243628 q^{-61} +127750 q^{-62} +399023 q^{-63} +460243 q^{-64} +297765 q^{-65} +22031 q^{-66} -229324 q^{-67} -348951 q^{-68} -290825 q^{-69} -112897 q^{-70} +90343 q^{-71} +228197 q^{-72} +241102 q^{-73} +148133 q^{-74} +4595 q^{-75} -121531 q^{-76} -171176 q^{-77} -140049 q^{-78} -54247 q^{-79} +42625 q^{-80} +101582 q^{-81} +107960 q^{-82} +67702 q^{-83} +4057 q^{-84} -46924 q^{-85} -69150 q^{-86} -58261 q^{-87} -23549 q^{-88} +12089 q^{-89} +35831 q^{-90} +39979 q^{-91} +25351 q^{-92} +4737 q^{-93} -13638 q^{-94} -22439 q^{-95} -18756 q^{-96} -9240 q^{-97} +1991 q^{-98} +9813 q^{-99} +10926 q^{-100} +7989 q^{-101} +2220 q^{-102} -3152 q^{-103} -5102 q^{-104} -4780 q^{-105} -2525 q^{-106} +206 q^{-107} +1678 q^{-108} +2427 q^{-109} +1790 q^{-110} +395 q^{-111} -420 q^{-112} -917 q^{-113} -791 q^{-114} -376 q^{-115} -118 q^{-116} +288 q^{-117} +409 q^{-118} +188 q^{-119} +54 q^{-120} -88 q^{-121} -88 q^{-122} -43 q^{-123} -85 q^{-124} +55 q^{-126} +29 q^{-127} +13 q^{-128} -17 q^{-129} -5 q^{-130} +11 q^{-131} -13 q^{-132} -6 q^{-133} +6 q^{-134} +3 q^{-135} +3 q^{-136} -5 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 33]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 33]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[18, 13, 1, 14], X[14, 5, 15, 6], X[6, 17, 7, 18], |
X[18, 13, 1, 14], X[14, 5, 15, 6], X[6, 17, 7, 18], |
||
X[16, 12, 17, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr> |
X[16, 12, 17, 11], X[10, 16, 11, 15]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 33]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 33]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 33]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 12, 2, 16, 18, 10, 6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 33]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -1, 2, 2, -1, -3, 2, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -1, 2, 2, -1, -3, 2, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 33]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 33]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 33]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_33_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 33]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 33]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 6 14 2 3 |
|||
19 - t + -- - -- - 14 t + 6 t - t |
19 - t + -- - -- - 14 t + 6 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 33]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 33]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 |
|||
1 + z - z</nowiki></pre></td></tr> |
1 + z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 33], Knot[11, NonAlternating, 55]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 33]], KnotSignature[Knot[9, 33]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 33]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 6 9 10 2 3 4 |
|||
11 - q + -- - -- + -- - -- - 9 q + 7 q - 4 q + q |
11 - q + -- - -- + -- - -- - 9 q + 7 q - 4 q + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 33]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 33]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 33]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 2 2 3 2 4 8 10 12 |
|||
-1 - q + q - --- + -- + -- + 3 q - 2 q + q - 2 q + q |
-1 - q + q - --- + -- + -- + 3 q - 2 q + q - 2 q + q |
||
10 8 2 |
10 8 2 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 33]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 33]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
2 4 2 z 2 2 4 2 4 z 2 4 6 |
|||
2 a - a - 3 z + -- + 4 a z - a z - 3 z + -- + 2 a z - z |
|||
2 2 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 33]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 |
|||
2 4 3 5 2 3 z 2 2 4 2 3 z |
2 4 3 5 2 3 z 2 2 4 2 3 z |
||
-2 a - a + a z + a z + 9 z + ---- + 10 a z + 4 a z - ---- - |
-2 a - a + a z + a z + 9 z + ---- + 10 a z + 4 a z - ---- - |
||
Line 109: | Line 172: | ||
5 a z + 3 a z + ---- + 10 a z + 4 a z + 2 z + 2 a z |
5 a z + 3 a z + ---- + 10 a z + 4 a z + 2 z + 2 a z |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 33]], Vassiliev[3][Knot[9, 33]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 33]], Vassiliev[3][Knot[9, 33]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 4 2 5 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 33]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 4 2 5 4 |
|||
- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 124: | Line 189: | ||
9 4 |
9 4 |
||
q t</nowiki></pre></td></tr> |
q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 33], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 -13 10 17 4 40 37 27 83 46 |
|||
115 + q - --- + q + --- - --- - --- + -- - -- - -- + -- - -- - |
|||
14 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q |
|||
60 113 39 83 2 3 4 5 6 |
|||
-- + --- - -- - -- - 22 q - 83 q + 86 q - 3 q - 59 q + 43 q + |
|||
4 3 2 q |
|||
q q q |
|||
7 8 9 10 11 12 |
|||
6 q - 25 q + 11 q + 3 q - 4 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:11, 29 August 2005
|
|
Visit 9 33's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 33's page at Knotilus! Visit 9 33's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15 |
Gauss code | 1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5 |
Dowker-Thistlethwaite code | 4 8 14 12 2 16 18 10 6 |
Conway Notation | [.21.2] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 33"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n55, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.