10 68: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 14, width is 5. |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_31]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 74: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^9-3 q^8+2 q^7+4 q^6-12 q^5+12 q^4+6 q^3-30 q^2+28 q+12-51 q^{-1} +38 q^{-2} +24 q^{-3} -64 q^{-4} +34 q^{-5} +36 q^{-6} -64 q^{-7} +19 q^{-8} +41 q^{-9} -49 q^{-10} +3 q^{-11} +36 q^{-12} -27 q^{-13} -6 q^{-14} +21 q^{-15} -9 q^{-16} -6 q^{-17} +7 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math>|J3=<math>-q^{18}+3 q^{17}-2 q^{16}-q^{15}+3 q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-6 q^9-16 q^8+13 q^7+34 q^6-32 q^5-52 q^4+43 q^3+88 q^2-62 q-114+60 q^{-1} +153 q^{-2} -57 q^{-3} -174 q^{-4} +34 q^{-5} +192 q^{-6} -10 q^{-7} -191 q^{-8} -25 q^{-9} +185 q^{-10} +54 q^{-11} -163 q^{-12} -87 q^{-13} +144 q^{-14} +104 q^{-15} -108 q^{-16} -127 q^{-17} +80 q^{-18} +130 q^{-19} -41 q^{-20} -132 q^{-21} +11 q^{-22} +115 q^{-23} +22 q^{-24} -96 q^{-25} -40 q^{-26} +69 q^{-27} +47 q^{-28} -39 q^{-29} -47 q^{-30} +19 q^{-31} +34 q^{-32} -2 q^{-33} -24 q^{-34} -2 q^{-35} +11 q^{-36} +5 q^{-37} -6 q^{-38} -2 q^{-39} + q^{-40} +2 q^{-41} - q^{-42} </math>|J4=Not Available|J5=Not Available|J6=Not Available|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 84: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 68]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[16, 5, 17, 6], |
|||
X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], |
X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], |
||
X[14, 7, 15, 8], X[6, 15, 7, 16], X[2, 12, 3, 11]]</nowiki></pre></td></tr> |
X[14, 7, 15, 8], X[6, 15, 7, 16], X[2, 12, 3, 11]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 68]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 4, -9, 8, -5, 6, -7, 10, -2, 3, -8, 9, -4, 7, |
|||
-6, 5, -3]</nowiki></pre></td></tr> |
-6, 5, -3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, 16, 14, 18, 2, 20, 6, 10, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, -2, 1, -2, -2, -3, 2, 2, -4, 3, -2, -4, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 68]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 14}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 68]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 68]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_68_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 68]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 68]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 14 2 |
|||
21 + -- - -- - 14 t + 4 t |
21 + -- - -- - 14 t + 4 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 68]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 68]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + 2 z + 4 z</nowiki></pre></td></tr> |
1 + 2 z + 4 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 31], Knot[10, 68]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{57, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 68]], KnotSignature[Knot[10, 68]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{57, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 68]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 4 7 8 9 9 2 3 |
|||
8 - q + -- - -- + -- - -- + -- - - - 5 q + 3 q - q |
8 - q + -- - -- + -- - -- + -- - - - 5 q + 3 q - q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 68]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 68]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 68]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 2 2 -12 2 -6 -4 2 4 6 8 10 |
|||
-q - --- + --- + q + -- - q + q + 2 q - 2 q + q + q - q |
-q - --- + --- + q + -- - q + q + 2 q - 2 q + q + q - q |
||
16 14 8 |
16 14 8 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 68]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 68]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 6 z 2 2 4 2 6 2 4 2 4 4 4 |
|||
a + a - a - -- + 3 a z + a z - a z + z + 2 a z + a z |
|||
2 |
|||
a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 68]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 6 3 5 7 2 z |
2 4 6 3 5 7 2 z |
||
-a + a + a - 2 a z - 6 a z - 8 a z - 4 a z + 4 z - -- + |
-a + a + a - 2 a z - 6 a z - 8 a z - 4 a z + 4 z - -- + |
||
Line 118: | Line 182: | ||
4 8 6 8 3 9 5 9 |
4 8 6 8 3 9 5 9 |
||
6 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
6 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 68]], Vassiliev[3][Knot[10, 68]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 68]], Vassiliev[3][Knot[10, 68]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 1 1 3 1 4 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 68]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 1 1 3 1 4 3 |
|||
- + 5 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
- + 5 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
q 15 7 13 6 11 6 11 5 9 5 9 4 7 4 |
q 15 7 13 6 11 6 11 5 9 5 9 4 7 4 |
||
Line 133: | Line 199: | ||
5 2 7 3 |
5 2 7 3 |
||
2 q t + q t</nowiki></pre></td></tr> |
2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 68], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -21 2 -19 7 6 9 21 6 27 36 |
|||
12 + q - --- - q + --- - --- - --- + --- - --- - --- + --- + |
|||
20 18 17 16 15 14 13 12 |
|||
q q q q q q q q |
|||
3 49 41 19 64 36 34 64 24 38 51 |
|||
--- - --- + -- + -- - -- + -- + -- - -- + -- + -- - -- + 28 q - |
|||
11 10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q q |
|||
2 3 4 5 6 7 8 9 |
|||
30 q + 6 q + 12 q - 12 q + 4 q + 2 q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 18:18, 29 August 2005
|
|
![]() |
Visit 10 68's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 68's page at Knotilus! Visit 10 68's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X12,4,13,3 X20,13,1,14 X16,5,17,6 X8,19,9,20 X18,9,19,10 X10,17,11,18 X14,7,15,8 X6,15,7,16 X2,12,3,11 |
Gauss code | 1, -10, 2, -1, 4, -9, 8, -5, 6, -7, 10, -2, 3, -8, 9, -4, 7, -6, 5, -3 |
Dowker-Thistlethwaite code | 4 12 16 14 18 2 20 6 10 8 |
Conway Notation | [211,3,3] |
Length is 14, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-14 t+21-14 t^{-1} +4 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+2 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 57, 0 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^3+3 q^2-5 q+8-9 q^{-1} +9 q^{-2} -8 q^{-3} +7 q^{-4} -4 q^{-5} +2 q^{-6} - q^{-7} } |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^9+a^3 z^9+2 a^6 z^8+6 a^4 z^8+4 a^2 z^8+a^7 z^7+a^5 z^7+7 a^3 z^7+7 a z^7-9 a^6 z^6-20 a^4 z^6-4 a^2 z^6+7 z^6-5 a^7 z^5-16 a^5 z^5-30 a^3 z^5-14 a z^5+5 z^5 a^{-1} +13 a^6 z^4+17 a^4 z^4-9 a^2 z^4+3 z^4 a^{-2} -10 z^4+8 a^7 z^3+23 a^5 z^3+27 a^3 z^3+8 a z^3-3 z^3 a^{-1} +z^3 a^{-3} -7 a^6 z^2-5 a^4 z^2+7 a^2 z^2-z^2 a^{-2} +4 z^2-4 a^7 z-8 a^5 z-6 a^3 z-2 a z+a^6+a^4-a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}-2 q^{16}+2 q^{14}+q^{12}+2 q^8-q^6+q^4+2 q^{-2} -2 q^{-4} + q^{-6} + q^{-8} - q^{-10} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{108}-q^{106}+4 q^{104}-6 q^{102}+6 q^{100}-6 q^{98}-q^{96}+13 q^{94}-24 q^{92}+32 q^{90}-30 q^{88}+12 q^{86}+15 q^{84}-46 q^{82}+60 q^{80}-60 q^{78}+34 q^{76}+4 q^{74}-44 q^{72}+64 q^{70}-62 q^{68}+38 q^{66}+4 q^{64}-38 q^{62}+45 q^{60}-36 q^{58}+8 q^{56}+28 q^{54}-46 q^{52}+53 q^{50}-28 q^{48}-5 q^{46}+50 q^{44}-77 q^{42}+79 q^{40}-53 q^{38}+8 q^{36}+41 q^{34}-73 q^{32}+86 q^{30}-67 q^{28}+26 q^{26}+21 q^{24}-55 q^{22}+56 q^{20}-41 q^{18}+4 q^{16}+28 q^{14}-38 q^{12}+31 q^{10}-8 q^8-20 q^6+43 q^4-47 q^2+33-7 q^{-2} -20 q^{-4} +40 q^{-6} -43 q^{-8} +39 q^{-10} -21 q^{-12} +5 q^{-14} +12 q^{-16} -27 q^{-18} +28 q^{-20} -25 q^{-22} +17 q^{-24} -7 q^{-26} - q^{-28} +8 q^{-30} -13 q^{-32} +13 q^{-34} -10 q^{-36} +7 q^{-38} -2 q^{-40} - q^{-42} +2 q^{-44} -4 q^{-46} +3 q^{-48} -2 q^{-50} + q^{-52} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{15}+q^{13}-2 q^{11}+3 q^9-q^7+q^5-q+3 q^{-1} -2 q^{-3} +2 q^{-5} - q^{-7} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-q^{42}-2 q^{40}+4 q^{38}-8 q^{34}+6 q^{32}+6 q^{30}-12 q^{28}+3 q^{26}+12 q^{24}-10 q^{22}-5 q^{20}+11 q^{18}-4 q^{16}-9 q^{14}+6 q^{12}+6 q^{10}-6 q^8-2 q^6+11 q^4-q^2-11+10 q^{-2} +4 q^{-4} -12 q^{-6} +6 q^{-8} +4 q^{-10} -6 q^{-12} +3 q^{-14} -2 q^{-18} + q^{-20} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{87}+q^{85}+2 q^{83}-5 q^{79}-2 q^{77}+8 q^{75}+8 q^{73}-10 q^{71}-17 q^{69}+6 q^{67}+27 q^{65}+4 q^{63}-33 q^{61}-20 q^{59}+30 q^{57}+37 q^{55}-20 q^{53}-45 q^{51}+q^{49}+52 q^{47}+16 q^{45}-47 q^{43}-32 q^{41}+37 q^{39}+42 q^{37}-25 q^{35}-51 q^{33}+13 q^{31}+53 q^{29}-2 q^{27}-52 q^{25}-11 q^{23}+51 q^{21}+23 q^{19}-41 q^{17}-34 q^{15}+25 q^{13}+42 q^{11}-5 q^9-44 q^7-18 q^5+42 q^3+37 q-28 q^{-1} -45 q^{-3} +17 q^{-5} +47 q^{-7} -7 q^{-9} -37 q^{-11} - q^{-13} +25 q^{-15} + q^{-17} -14 q^{-19} - q^{-21} +8 q^{-23} -2 q^{-25} - q^{-27} - q^{-33} +2 q^{-37} - q^{-39} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{144}-q^{142}-2 q^{140}+q^{136}+7 q^{134}-8 q^{130}-8 q^{128}-6 q^{126}+22 q^{124}+20 q^{122}-3 q^{120}-28 q^{118}-47 q^{116}+14 q^{114}+54 q^{112}+56 q^{110}-q^{108}-104 q^{106}-71 q^{104}+13 q^{102}+122 q^{100}+125 q^{98}-51 q^{96}-145 q^{94}-147 q^{92}+41 q^{90}+221 q^{88}+133 q^{86}-44 q^{84}-252 q^{82}-171 q^{80}+119 q^{78}+248 q^{76}+176 q^{74}-154 q^{72}-299 q^{70}-101 q^{68}+173 q^{66}+312 q^{64}+44 q^{62}-255 q^{60}-245 q^{58}+27 q^{56}+301 q^{54}+170 q^{52}-147 q^{50}-273 q^{48}-65 q^{46}+242 q^{44}+215 q^{42}-81 q^{40}-273 q^{38}-109 q^{36}+192 q^{34}+247 q^{32}-8 q^{30}-255 q^{28}-182 q^{26}+77 q^{24}+267 q^{22}+148 q^{20}-133 q^{18}-246 q^{16}-150 q^{14}+158 q^{12}+296 q^{10}+115 q^8-172 q^6-349 q^4-81 q^2+268+307 q^{-2} +33 q^{-4} -335 q^{-6} -243 q^{-8} +98 q^{-10} +279 q^{-12} +159 q^{-14} -170 q^{-16} -201 q^{-18} -22 q^{-20} +127 q^{-22} +128 q^{-24} -52 q^{-26} -87 q^{-28} -27 q^{-30} +30 q^{-32} +55 q^{-34} -17 q^{-36} -19 q^{-38} -5 q^{-40} +19 q^{-44} -8 q^{-46} -3 q^{-48} -3 q^{-52} +6 q^{-54} -2 q^{-56} + q^{-58} -2 q^{-62} + q^{-64} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{215}+q^{213}+2 q^{211}-q^{207}-3 q^{205}-5 q^{203}+10 q^{199}+10 q^{197}+3 q^{195}-8 q^{193}-24 q^{191}-23 q^{189}+6 q^{187}+40 q^{185}+50 q^{183}+23 q^{181}-38 q^{179}-94 q^{177}-84 q^{175}+3 q^{173}+116 q^{171}+168 q^{169}+98 q^{167}-76 q^{165}-239 q^{163}-253 q^{161}-63 q^{159}+225 q^{157}+400 q^{155}+300 q^{153}-55 q^{151}-446 q^{149}-569 q^{147}-265 q^{145}+296 q^{143}+723 q^{141}+665 q^{139}+90 q^{137}-651 q^{135}-1000 q^{133}-610 q^{131}+291 q^{129}+1074 q^{127}+1134 q^{125}+316 q^{123}-842 q^{121}-1452 q^{119}-978 q^{117}+282 q^{115}+1434 q^{113}+1554 q^{111}+441 q^{109}-1088 q^{107}-1837 q^{105}-1162 q^{103}+473 q^{101}+1802 q^{99}+1708 q^{97}+222 q^{95}-1474 q^{93}-1985 q^{91}-855 q^{89}+983 q^{87}+1988 q^{85}+1313 q^{83}-464 q^{81}-1795 q^{79}-1541 q^{77}+40 q^{75}+1504 q^{73}+1573 q^{71}+238 q^{69}-1233 q^{67}-1481 q^{65}-353 q^{63}+1039 q^{61}+1358 q^{59}+358 q^{57}-944 q^{55}-1285 q^{53}-357 q^{51}+931 q^{49}+1305 q^{47}+412 q^{45}-894 q^{43}-1389 q^{41}-622 q^{39}+743 q^{37}+1488 q^{35}+965 q^{33}-394 q^{31}-1462 q^{29}-1378 q^{27}-197 q^{25}+1208 q^{23}+1742 q^{21}+923 q^{19}-683 q^{17}-1868 q^{15}-1658 q^{13}-83 q^{11}+1695 q^9+2208 q^7+912 q^5-1198 q^3-2404 q-1630 q^{-1} +521 q^{-3} +2236 q^{-5} +2054 q^{-7} +153 q^{-9} -1772 q^{-11} -2102 q^{-13} -671 q^{-15} +1186 q^{-17} +1855 q^{-19} +911 q^{-21} -647 q^{-23} -1424 q^{-25} -904 q^{-27} +256 q^{-29} +969 q^{-31} +737 q^{-33} -34 q^{-35} -596 q^{-37} -516 q^{-39} -35 q^{-41} +318 q^{-43} +308 q^{-45} +55 q^{-47} -163 q^{-49} -174 q^{-51} -25 q^{-53} +80 q^{-55} +71 q^{-57} +16 q^{-59} -32 q^{-61} -35 q^{-63} - q^{-65} +19 q^{-67} +11 q^{-69} -6 q^{-71} -8 q^{-73} - q^{-75} +5 q^{-79} +4 q^{-81} -3 q^{-83} -4 q^{-85} +2 q^{-87} - q^{-89} +2 q^{-93} - q^{-95} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}-2 q^{16}+2 q^{14}+q^{12}+2 q^8-q^6+q^4+2 q^{-2} -2 q^{-4} + q^{-6} + q^{-8} - q^{-10} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 68"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-14 t+21-14 t^{-1} +4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^3+3 q^2-5 q+8-9 q^{-1} +9 q^{-2} -8 q^{-3} +7 q^{-4} -4 q^{-5} +2 q^{-6} - q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^9+a^3 z^9+2 a^6 z^8+6 a^4 z^8+4 a^2 z^8+a^7 z^7+a^5 z^7+7 a^3 z^7+7 a z^7-9 a^6 z^6-20 a^4 z^6-4 a^2 z^6+7 z^6-5 a^7 z^5-16 a^5 z^5-30 a^3 z^5-14 a z^5+5 z^5 a^{-1} +13 a^6 z^4+17 a^4 z^4-9 a^2 z^4+3 z^4 a^{-2} -10 z^4+8 a^7 z^3+23 a^5 z^3+27 a^3 z^3+8 a z^3-3 z^3 a^{-1} +z^3 a^{-3} -7 a^6 z^2-5 a^4 z^2+7 a^2 z^2-z^2 a^{-2} +4 z^2-4 a^7 z-8 a^5 z-6 a^3 z-2 a z+a^6+a^4-a^2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_31, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (2, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 68. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-3 q^8+2 q^7+4 q^6-12 q^5+12 q^4+6 q^3-30 q^2+28 q+12-51 q^{-1} +38 q^{-2} +24 q^{-3} -64 q^{-4} +34 q^{-5} +36 q^{-6} -64 q^{-7} +19 q^{-8} +41 q^{-9} -49 q^{-10} +3 q^{-11} +36 q^{-12} -27 q^{-13} -6 q^{-14} +21 q^{-15} -9 q^{-16} -6 q^{-17} +7 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+3 q^{17}-2 q^{16}-q^{15}+3 q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-6 q^9-16 q^8+13 q^7+34 q^6-32 q^5-52 q^4+43 q^3+88 q^2-62 q-114+60 q^{-1} +153 q^{-2} -57 q^{-3} -174 q^{-4} +34 q^{-5} +192 q^{-6} -10 q^{-7} -191 q^{-8} -25 q^{-9} +185 q^{-10} +54 q^{-11} -163 q^{-12} -87 q^{-13} +144 q^{-14} +104 q^{-15} -108 q^{-16} -127 q^{-17} +80 q^{-18} +130 q^{-19} -41 q^{-20} -132 q^{-21} +11 q^{-22} +115 q^{-23} +22 q^{-24} -96 q^{-25} -40 q^{-26} +69 q^{-27} +47 q^{-28} -39 q^{-29} -47 q^{-30} +19 q^{-31} +34 q^{-32} -2 q^{-33} -24 q^{-34} -2 q^{-35} +11 q^{-36} +5 q^{-37} -6 q^{-38} -2 q^{-39} + q^{-40} +2 q^{-41} - q^{-42} } |
4 | Not Available |
5 | Not Available |
6 | Not Available |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.