In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 56]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13],
X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15],
X[14, 20, 15, 19], X[8, 12, 9, 11], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 56]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6,
-4, 8, -7] |
In[4]:= | DTCode[Knot[10, 56]] |
Out[4]= | DTCode[4, 10, 12, 16, 2, 8, 18, 20, 6, 14] |
In[5]:= | br = BR[Knot[10, 56]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 56]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 56]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 56]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 56]][t] |
Out[10]= | 2 8 14 2 3
17 - -- + -- - -- - 14 t + 8 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 56]][z] |
Out[11]= | 4 6
1 - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]} |
In[13]:= | {KnotDet[Knot[10, 56]], KnotSignature[Knot[10, 56]]} |
Out[13]= | {65, 4} |
In[14]:= | Jones[Knot[10, 56]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10
1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 25], Knot[10, 56]} |
In[16]:= | A2Invariant[Knot[10, 56]][q] |
Out[16]= | 4 6 8 10 12 18 20 22 24 26
1 + q + 2 q - q + 3 q - q - 3 q + q - 2 q + q + q -
28 30
q + q |
In[17]:= | HOMFLYPT[Knot[10, 56]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4
-8 2 2 2 z 3 z 2 z 3 z z 3 z 3 z z
a - -- + -- + ---- - ---- - ---- + ---- + -- - ---- - ---- + -- -
6 2 8 6 4 2 8 6 4 2
a a a a a a a a a a
6 6
z z
-- - --
6 4
a a |
In[18]:= | Kauffman[Knot[10, 56]][a, z] |
Out[18]= | 2 2 2 2 2
-8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z
a + -- - -- - --- - --- - --- - --- + ---- - ---- - ---- + ---- +
6 2 9 7 5 12 10 8 6 4
a a a a a a a a a a
2 3 3 3 3 3 4 4 4
5 z 3 z 11 z 21 z 11 z 4 z z 6 z 4 z
---- - ---- + ----- + ----- + ----- + ---- + --- - ---- + ---- +
2 11 9 7 5 3 12 10 8
a a a a a a a a a
4 4 4 5 5 5 5 5 6
12 z 3 z 4 z 3 z 11 z 21 z 13 z 6 z 5 z
----- - ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- -
6 4 2 11 9 7 5 3 10
a a a a a a a a a
6 6 6 6 7 7 7 7 8 8
5 z 14 z 3 z z 6 z 7 z 3 z 2 z 4 z 6 z
---- - ----- - ---- + -- + ---- + ---- + ---- + ---- + ---- + ---- +
8 6 4 2 9 7 5 3 8 6
a a a a a a a a a a
8 9 9
2 z z z
---- + -- + --
4 7 5
a a a |
In[19]:= | {Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]} |
Out[19]= | {0, -2} |
In[20]:= | Kh[Knot[10, 56]][q, t] |
Out[20]= | 3
3 5 1 q q 5 7 7 2 9 2
4 q + 2 q + ---- + - + -- + 4 q t + 3 q t + 6 q t + 4 q t +
2 t t
q t
9 3 11 3 11 4 13 4 13 5 15 5
5 q t + 6 q t + 5 q t + 5 q t + 4 q t + 5 q t +
15 6 17 6 17 7 19 7 21 8
2 q t + 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 56], 2][q] |
Out[21]= | -2 2 2 3 4 5 6 7 8
q - - + 7 q - 9 q - 4 q + 25 q - 21 q - 20 q + 55 q - 26 q -
q
9 10 11 12 13 14 15 16
50 q + 83 q - 19 q - 79 q + 94 q - 4 q - 90 q + 83 q +
17 18 19 20 21 22 23 24
9 q - 76 q + 54 q + 13 q - 45 q + 23 q + 9 q - 16 q +
25 26 27 28
6 q + 2 q - 3 q + q |