| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 9]] | 
| Out[2]=   | PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[12, 3, 13, 4], X[2, 15, 3, 16], 
 X[14, 5, 15, 6], X[4, 13, 5, 14], X[18, 10, 19, 9], X[20, 12, 1, 11], 
X[8, 18, 9, 17], X[10, 20, 11, 19]] | 
| In[3]:= | GaussCode[Knot[10, 9]] | 
| Out[3]=   | GaussCode[1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, 
  -7, 10, -8] | 
| In[4]:= | DTCode[Knot[10, 9]] | 
| Out[4]=   | DTCode[6, 12, 14, 16, 18, 20, 4, 2, 8, 10] | 
| In[5]:= | br = BR[Knot[10, 9]] | 
| Out[5]=   | BR[3, {1, 1, 1, 1, 1, -2, 1, -2, -2, -2}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {3, 10} | 
| In[7]:= | BraidIndex[Knot[10, 9]] | 
| Out[7]=   | 3 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 9]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Reversible, 1, 4, 2, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 9]][t] | 
| Out[10]=   |       -4   3    5    7            2      3    4
-7 - t   + -- - -- + - + 7 t - 5 t  + 3 t  - t
            3    2   t
t    t | 
| In[11]:= | Conway[Knot[10, 9]][z] | 
| Out[11]=   |        2      4      6    8
1 - 2 z  - 7 z  - 5 z  - z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 9]} | 
| In[13]:= | {KnotDet[Knot[10, 9]], KnotSignature[Knot[10, 9]]} | 
| Out[13]=   | {39, 2} | 
| In[14]:= | Jones[Knot[10, 9]][q] | 
| Out[14]=   |       -3   2    3            2      3      4      5      6    7
-4 + q   - -- + - + 6 q - 6 q  + 6 q  - 5 q  + 3 q  - 2 q  + q
            2   q
q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 9]} | 
| In[16]:= | A2Invariant[Knot[10, 9]][q] | 
| Out[16]=   |  -8    -4    2    4      6    8    12    14    16    20
q   + q   + q  - q  + 2 q  - q  - q   - q   + q   + q | 
| In[17]:= | HOMFLYPT[Knot[10, 9]][a, z] | 
| Out[17]=   |                         2       2             4       4         6
   2    4       2   7 z    16 z       4   5 z    17 z     6   z
 3 + -- - -- + 7 z  + ---- - ----- + 5 z  + ---- - ----- + z  + -- - 
     4    2            4      2              4      2           4
   a    a            a      a              a      a           a
    6    8
 7 z    z
 ---- - --
   2     2
a     a | 
| In[18]:= | Kauffman[Knot[10, 9]][a, z] | 
| Out[18]=   |                                                2    2      2       2
   2    4    z    2 z   2 z            2   2 z    z    8 z    22 z
 3 + -- + -- + -- - --- - --- - a z - 8 z  - ---- + -- - ---- - ----- + 
     4    2    7    3     a                   8     6     4      2
   a    a    a    a                         a     a     a      a
              3      3      3      3                     4      4
    2  2   4 z    4 z    5 z    4 z         3       4   z    3 z
 3 a  z  - ---- + ---- + ---- + ---- + 7 a z  + 10 z  + -- - ---- + 
             7      5      3     a                       8     6
            a      a      a                             a     a
     4       4                5      5      5                      6
 13 z    31 z       2  4   2 z    4 z    2 z         5      6   2 z
 ----- + ----- - 4 a  z  + ---- - ---- - ---- - 8 a z  - 8 z  + ---- - 
   4       2                 7      5     a                       6
  a       a                 a      a                             a
    6       6              7      7      7                      8
 7 z    18 z     2  6   2 z    2 z    2 z         7      8   2 z
 ---- - ----- + a  z  + ---- - ---- - ---- + 2 a z  + 2 z  + ---- + 
   4      2               5      3     a                       4
  a      a               a      a                             a
    8    9    9
 4 z    z    z
 ---- + -- + --
   2     3   a
a     a | 
| In[19]:= | {Vassiliev[2][Knot[10, 9]], Vassiliev[3][Knot[10, 9]]} | 
| Out[19]=   | {-2, -2} | 
| In[20]:= | Kh[Knot[10, 9]][q, t] | 
| Out[20]=   |          3     1       1       1       2      1      2    2 q
4 q + 3 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              7  4    5  3    3  3    3  2      2   q t    t
            q  t    q  t    q  t    q  t    q t
    3        5        5  2      7  2      7  3      9  3    9  4
 3 q  t + 3 q  t + 3 q  t  + 3 q  t  + 2 q  t  + 3 q  t  + q  t  + 
    11  4    11  5    13  5    15  6
2 q   t  + q   t  + q   t  + q   t | 
| In[21]:= | ColouredJones[Knot[10, 9], 2][q] | 
| Out[21]=   |       -10   2    5    6    2    12   9    8    19              2
-8 + q    - -- + -- - -- - -- + -- - -- - -- + -- - 15 q + 24 q  - 
             9    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
    3       4       5    6       7       8       10       11
 5 q  - 21 q  + 25 q  - q  - 23 q  + 22 q  - 18 q   + 15 q   - 
     13      14      16      17      19    20
10 q   + 8 q   - 5 q   + 4 q   - 2 q   + q |