8 3: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 186: | Line 187: | ||
</table> |
</table> |
||
{| width=100% |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 21:03, 29 August 2005
|
|
![]() |
Visit 8 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 3's page at Knotilus! Visit 8 3's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X14,10,15,9 X10,5,11,6 X12,3,13,4 X4,11,5,12 X2,13,3,14 X16,8,1,7 X8,16,9,15 |
Gauss code | 1, -6, 4, -5, 3, -1, 7, -8, 2, -3, 5, -4, 6, -2, 8, -7 |
Dowker-Thistlethwaite code | 6 12 10 16 14 4 2 8 |
Conway Notation | [44] |
Length is 10, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 17, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4-z^2 a^2-2 z^2-1-z^2 a^{-2} + a^{-4} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6+a^3 z^5-4 a z^5-4 z^5 a^{-1} +z^5 a^{-3} +a^4 z^4-2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -6 z^4-2 a^3 z^3+8 a z^3+8 z^3 a^{-1} -2 z^3 a^{-3} -3 a^4 z^2+a^2 z^2+z^2 a^{-2} -3 z^2 a^{-4} +8 z^2-4 a z-4 z a^{-1} +a^4+ a^{-4} -1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+q^{12}+q^8-q^4-1- q^{-4} + q^{-8} + q^{-12} + q^{-14} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}-q^{60}+q^{58}+q^{56}-q^{54}+2 q^{52}-q^{50}+2 q^{48}-q^{46}+q^{42}-2 q^{40}+4 q^{38}-3 q^{36}+q^{34}+q^{32}-2 q^{30}+3 q^{28}-2 q^{26}+q^{24}+2 q^{22}-2 q^{20}+q^{18}-2 q^{14}+4 q^{12}-4 q^{10}+q^8-3 q^4+3 q^2-5+3 q^{-2} -3 q^{-4} + q^{-8} -4 q^{-10} +4 q^{-12} -2 q^{-14} + q^{-18} -2 q^{-20} +2 q^{-22} + q^{-24} -2 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} + q^{-34} -3 q^{-36} +4 q^{-38} -2 q^{-40} + q^{-42} - q^{-46} +2 q^{-48} - q^{-50} +2 q^{-52} - q^{-54} + q^{-56} + q^{-58} - q^{-60} + q^{-62} + q^{-66} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9+q^5-q^3- q^{-3} + q^{-5} + q^{-9} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+q^{20}-q^{18}-2 q^{16}+q^{14}-2 q^{10}+2 q^8+q^6-q^4+q^2+1+ q^{-2} - q^{-4} + q^{-6} +2 q^{-8} -2 q^{-10} + q^{-14} -2 q^{-16} - q^{-18} + q^{-20} + q^{-26} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}-q^{41}-q^{39}+q^{35}-q^{33}-2 q^{31}+3 q^{27}+3 q^{25}-2 q^{23}-2 q^{21}+2 q^{19}+4 q^{17}-2 q^{15}-3 q^{13}+q^{11}+3 q^9-2 q^5-2 q^{-5} +3 q^{-9} + q^{-11} -3 q^{-13} -2 q^{-15} +4 q^{-17} +2 q^{-19} -2 q^{-21} -2 q^{-23} +3 q^{-25} +3 q^{-27} -2 q^{-31} - q^{-33} + q^{-35} - q^{-39} - q^{-41} + q^{-51} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-q^{76}-q^{72}+q^{68}-q^{66}-2 q^{62}-q^{60}+3 q^{58}+2 q^{56}+3 q^{54}-2 q^{52}-3 q^{50}-q^{48}+q^{46}+7 q^{44}+2 q^{42}-3 q^{40}-6 q^{38}-5 q^{36}+6 q^{34}+6 q^{32}+q^{30}-6 q^{28}-9 q^{26}+4 q^{24}+6 q^{22}+3 q^{20}-3 q^{18}-7 q^{16}+q^{14}+3 q^{12}+3 q^{10}-2 q^6+q^4+q^2+1+ q^{-2} + q^{-4} -2 q^{-6} +3 q^{-10} +3 q^{-12} + q^{-14} -7 q^{-16} -3 q^{-18} +3 q^{-20} +6 q^{-22} +4 q^{-24} -9 q^{-26} -6 q^{-28} + q^{-30} +6 q^{-32} +6 q^{-34} -5 q^{-36} -6 q^{-38} -3 q^{-40} +2 q^{-42} +7 q^{-44} + q^{-46} - q^{-48} -3 q^{-50} -2 q^{-52} +3 q^{-54} +2 q^{-56} +3 q^{-58} - q^{-60} -2 q^{-62} - q^{-66} + q^{-68} - q^{-72} - q^{-76} + q^{-84} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{125}-q^{117}-q^{115}+q^{107}-2 q^{103}-q^{101}+q^{97}+3 q^{95}+3 q^{93}-3 q^{89}-3 q^{87}-2 q^{85}+3 q^{83}+5 q^{81}+5 q^{79}+q^{77}-5 q^{75}-8 q^{73}-6 q^{71}+8 q^{67}+10 q^{65}+5 q^{63}-6 q^{61}-14 q^{59}-11 q^{57}+12 q^{53}+16 q^{51}+7 q^{49}-11 q^{47}-18 q^{45}-10 q^{43}+6 q^{41}+18 q^{39}+16 q^{37}-3 q^{35}-15 q^{33}-12 q^{31}+11 q^{27}+12 q^{25}+2 q^{23}-7 q^{21}-8 q^{19}-2 q^{17}+4 q^{15}+4 q^{13}+2 q^{11}-q^9-3 q^7-3 q^{-7} - q^{-9} +2 q^{-11} +4 q^{-13} +4 q^{-15} -2 q^{-17} -8 q^{-19} -7 q^{-21} +2 q^{-23} +12 q^{-25} +11 q^{-27} -12 q^{-31} -15 q^{-33} -3 q^{-35} +16 q^{-37} +18 q^{-39} +6 q^{-41} -10 q^{-43} -18 q^{-45} -11 q^{-47} +7 q^{-49} +16 q^{-51} +12 q^{-53} -11 q^{-57} -14 q^{-59} -6 q^{-61} +5 q^{-63} +10 q^{-65} +8 q^{-67} -6 q^{-71} -8 q^{-73} -5 q^{-75} + q^{-77} +5 q^{-79} +5 q^{-81} +3 q^{-83} -2 q^{-85} -3 q^{-87} -3 q^{-89} +3 q^{-93} +3 q^{-95} + q^{-97} - q^{-101} -2 q^{-103} + q^{-107} - q^{-115} - q^{-117} + q^{-125} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+q^{12}+q^8-q^4-1- q^{-4} + q^{-8} + q^{-12} + q^{-14} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}+2 q^{32}-2 q^{30}+4 q^{28}-2 q^{26}+4 q^{24}-6 q^{22}+5 q^{20}-6 q^{18}+4 q^{16}-6 q^{14}-q^{12}-6 q^8+8 q^6-8 q^4+16 q^2-6+16 q^{-2} -8 q^{-4} +8 q^{-6} -6 q^{-8} - q^{-12} -6 q^{-14} +4 q^{-16} -6 q^{-18} +5 q^{-20} -6 q^{-22} +4 q^{-24} -2 q^{-26} +4 q^{-28} -2 q^{-30} +2 q^{-32} + q^{-36} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}+q^{34}+q^{32}+q^{28}+q^{26}-q^{24}-3 q^{22}-2 q^{20}-2 q^{14}+2 q^{10}+q^4+2 q^2+2+2 q^{-2} + q^{-4} +2 q^{-10} -2 q^{-14} -2 q^{-20} -3 q^{-22} - q^{-24} + q^{-26} + q^{-28} + q^{-32} + q^{-34} + q^{-36} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{24}+q^{22}+q^{18}+2 q^{16}-2 q^{14}-q^{12}-3 q^8-q^6+q^4+2 q^2+2+2 q^{-2} + q^{-4} - q^{-6} -3 q^{-8} - q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} + q^{-22} + q^{-24} + q^{-28} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}+q^{17}+q^{15}+q^{11}-q^5-q- q^{-1} - q^{-5} + q^{-11} + q^{-15} + q^{-17} + q^{-19} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{24}-q^{22}+2 q^{20}-q^{18}+2 q^{16}+q^{12}-q^8+q^6-3 q^4+2 q^2-4+2 q^{-2} -3 q^{-4} + q^{-6} - q^{-8} + q^{-12} +2 q^{-16} - q^{-18} +2 q^{-20} - q^{-22} + q^{-24} + q^{-28} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{38}+q^{36}-q^{32}+q^{28}+2 q^{26}-q^{24}-2 q^{22}-q^{20}+q^{18}-2 q^{14}-q^{12}+q^8+q^2+3+ q^{-2} + q^{-8} - q^{-12} -2 q^{-14} + q^{-18} - q^{-20} -2 q^{-22} - q^{-24} +2 q^{-26} + q^{-28} - q^{-32} + q^{-36} + q^{-38} + q^{-46} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}-q^{60}+q^{58}+q^{56}-q^{54}+2 q^{52}-q^{50}+2 q^{48}-q^{46}+q^{42}-2 q^{40}+4 q^{38}-3 q^{36}+q^{34}+q^{32}-2 q^{30}+3 q^{28}-2 q^{26}+q^{24}+2 q^{22}-2 q^{20}+q^{18}-2 q^{14}+4 q^{12}-4 q^{10}+q^8-3 q^4+3 q^2-5+3 q^{-2} -3 q^{-4} + q^{-8} -4 q^{-10} +4 q^{-12} -2 q^{-14} + q^{-18} -2 q^{-20} +2 q^{-22} + q^{-24} -2 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} + q^{-34} -3 q^{-36} +4 q^{-38} -2 q^{-40} + q^{-42} - q^{-46} +2 q^{-48} - q^{-50} +2 q^{-52} - q^{-54} + q^{-56} + q^{-58} - q^{-60} + q^{-62} + q^{-66} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4-z^2 a^2-2 z^2-1-z^2 a^{-2} + a^{-4} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6+a^3 z^5-4 a z^5-4 z^5 a^{-1} +z^5 a^{-3} +a^4 z^4-2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -6 z^4-2 a^3 z^3+8 a z^3+8 z^3 a^{-1} -2 z^3 a^{-3} -3 a^4 z^2+a^2 z^2+z^2 a^{-2} -3 z^2 a^{-4} +8 z^2-4 a z-4 z a^{-1} +a^4+ a^{-4} -1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_1, ...}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {...}
Vassiliev invariants
V2 and V3: | (-4, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 8 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-q^{11}+2 q^9-3 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -3 q^{-8} +2 q^{-9} - q^{-11} + q^{-12} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-q^{23}+q^{20}-2 q^{19}+q^{17}+2 q^{16}-4 q^{15}-q^{14}+3 q^{13}+5 q^{12}-4 q^{11}-6 q^{10}+3 q^9+9 q^8-2 q^7-12 q^6+2 q^5+13 q^4-15 q^2+15-15 q^{-2} +13 q^{-4} +2 q^{-5} -12 q^{-6} -2 q^{-7} +9 q^{-8} +3 q^{-9} -6 q^{-10} -4 q^{-11} +5 q^{-12} +3 q^{-13} - q^{-14} -4 q^{-15} +2 q^{-16} + q^{-17} -2 q^{-19} + q^{-20} - q^{-23} + q^{-24} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{40}-q^{39}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{32}-3 q^{31}+3 q^{30}-4 q^{29}+2 q^{28}+5 q^{27}-4 q^{26}+4 q^{25}-9 q^{24}+q^{23}+7 q^{22}-2 q^{21}+10 q^{20}-14 q^{19}-4 q^{18}+4 q^{17}-q^{16}+21 q^{15}-14 q^{14}-9 q^{13}-3 q^{12}-4 q^{11}+34 q^{10}-12 q^9-12 q^8-9 q^7-8 q^6+42 q^5-10 q^4-12 q^3-12 q^2-10 q+45-10 q^{-1} -12 q^{-2} -12 q^{-3} -10 q^{-4} +42 q^{-5} -8 q^{-6} -9 q^{-7} -12 q^{-8} -12 q^{-9} +34 q^{-10} -4 q^{-11} -3 q^{-12} -9 q^{-13} -14 q^{-14} +21 q^{-15} - q^{-16} +4 q^{-17} -4 q^{-18} -14 q^{-19} +10 q^{-20} -2 q^{-21} +7 q^{-22} + q^{-23} -9 q^{-24} +4 q^{-25} -4 q^{-26} +5 q^{-27} +2 q^{-28} -4 q^{-29} +3 q^{-30} -3 q^{-31} + q^{-32} + q^{-33} -2 q^{-34} +2 q^{-35} - q^{-36} - q^{-39} + q^{-40} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{59}-q^{56}+2 q^{54}-q^{53}+q^{51}-2 q^{50}-2 q^{49}+3 q^{48}+q^{46}+3 q^{45}-2 q^{44}-5 q^{43}+2 q^{40}+8 q^{39}-5 q^{37}-4 q^{36}-6 q^{35}-q^{34}+10 q^{33}+6 q^{32}+3 q^{31}-2 q^{30}-11 q^{29}-12 q^{28}+2 q^{27}+9 q^{26}+14 q^{25}+10 q^{24}-7 q^{23}-21 q^{22}-16 q^{21}+2 q^{20}+22 q^{19}+26 q^{18}+5 q^{17}-23 q^{16}-35 q^{15}-10 q^{14}+25 q^{13}+38 q^{12}+16 q^{11}-22 q^{10}-45 q^9-19 q^8+24 q^7+44 q^6+22 q^5-22 q^4-47 q^3-22 q^2+22 q+47+22 q^{-1} -22 q^{-2} -47 q^{-3} -22 q^{-4} +22 q^{-5} +44 q^{-6} +24 q^{-7} -19 q^{-8} -45 q^{-9} -22 q^{-10} +16 q^{-11} +38 q^{-12} +25 q^{-13} -10 q^{-14} -35 q^{-15} -23 q^{-16} +5 q^{-17} +26 q^{-18} +22 q^{-19} +2 q^{-20} -16 q^{-21} -21 q^{-22} -7 q^{-23} +10 q^{-24} +14 q^{-25} +9 q^{-26} +2 q^{-27} -12 q^{-28} -11 q^{-29} -2 q^{-30} +3 q^{-31} +6 q^{-32} +10 q^{-33} - q^{-34} -6 q^{-35} -4 q^{-36} -5 q^{-37} +8 q^{-39} +2 q^{-40} -5 q^{-43} -2 q^{-44} +3 q^{-45} + q^{-46} +3 q^{-48} -2 q^{-49} -2 q^{-50} + q^{-51} - q^{-53} +2 q^{-54} - q^{-56} - q^{-59} + q^{-60} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-q^{83}-q^{80}+3 q^{77}-2 q^{76}+q^{74}-2 q^{73}-q^{72}-q^{71}+6 q^{70}-2 q^{69}+3 q^{67}-4 q^{66}-3 q^{65}-4 q^{64}+9 q^{63}-q^{62}+q^{61}+7 q^{60}-4 q^{59}-7 q^{58}-11 q^{57}+10 q^{56}-2 q^{55}+2 q^{54}+15 q^{53}+2 q^{52}-6 q^{51}-17 q^{50}+7 q^{49}-13 q^{48}-5 q^{47}+20 q^{46}+12 q^{45}+7 q^{44}-11 q^{43}+13 q^{42}-29 q^{41}-25 q^{40}+8 q^{39}+12 q^{38}+21 q^{37}+10 q^{36}+39 q^{35}-32 q^{34}-44 q^{33}-21 q^{32}-8 q^{31}+19 q^{30}+29 q^{29}+82 q^{28}-15 q^{27}-50 q^{26}-50 q^{25}-40 q^{24}+q^{23}+36 q^{22}+124 q^{21}+9 q^{20}-45 q^{19}-68 q^{18}-65 q^{17}-19 q^{16}+34 q^{15}+151 q^{14}+25 q^{13}-38 q^{12}-76 q^{11}-76 q^{10}-31 q^9+31 q^8+163 q^7+29 q^6-34 q^5-78 q^4-78 q^3-34 q^2+29 q+167+29 q^{-1} -34 q^{-2} -78 q^{-3} -78 q^{-4} -34 q^{-5} +29 q^{-6} +163 q^{-7} +31 q^{-8} -31 q^{-9} -76 q^{-10} -76 q^{-11} -38 q^{-12} +25 q^{-13} +151 q^{-14} +34 q^{-15} -19 q^{-16} -65 q^{-17} -68 q^{-18} -45 q^{-19} +9 q^{-20} +124 q^{-21} +36 q^{-22} + q^{-23} -40 q^{-24} -50 q^{-25} -50 q^{-26} -15 q^{-27} +82 q^{-28} +29 q^{-29} +19 q^{-30} -8 q^{-31} -21 q^{-32} -44 q^{-33} -32 q^{-34} +39 q^{-35} +10 q^{-36} +21 q^{-37} +12 q^{-38} +8 q^{-39} -25 q^{-40} -29 q^{-41} +13 q^{-42} -11 q^{-43} +7 q^{-44} +12 q^{-45} +20 q^{-46} -5 q^{-47} -13 q^{-48} +7 q^{-49} -17 q^{-50} -6 q^{-51} +2 q^{-52} +15 q^{-53} +2 q^{-54} -2 q^{-55} +10 q^{-56} -11 q^{-57} -7 q^{-58} -4 q^{-59} +7 q^{-60} + q^{-61} - q^{-62} +9 q^{-63} -4 q^{-64} -3 q^{-65} -4 q^{-66} +3 q^{-67} -2 q^{-69} +6 q^{-70} - q^{-71} - q^{-72} -2 q^{-73} + q^{-74} -2 q^{-76} +3 q^{-77} - q^{-80} - q^{-83} + q^{-84} } |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.
Back to the top. |
|