In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 44]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[13, 20, 14, 1], X[9, 15, 10, 14], X[15, 18, 16, 19],
X[7, 16, 8, 17], X[17, 8, 18, 9], X[19, 7, 20, 6]] |
In[3]:= | GaussCode[Knot[10, 44]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 10, -8, 9, -6, 3, -4, 2, -5, 6, -7, 8, -9,
7, -10, 5] |
In[4]:= | DTCode[Knot[10, 44]] |
Out[4]= | DTCode[4, 10, 12, 16, 14, 2, 20, 18, 8, 6] |
In[5]:= | br = BR[Knot[10, 44]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, -3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 44]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 44]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 44]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 44]][t] |
Out[10]= | -3 7 19 2 3
-25 + t - -- + -- + 19 t - 7 t + t
2 t
t |
In[11]:= | Conway[Knot[10, 44]][z] |
Out[11]= | 4 6
1 - z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 44], Knot[11, NonAlternating, 154]} |
In[13]:= | {KnotDet[Knot[10, 44]], KnotSignature[Knot[10, 44]]} |
Out[13]= | {79, -2} |
In[14]:= | Jones[Knot[10, 44]][q] |
Out[14]= | -7 4 7 10 13 13 12 2 3
-9 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q
6 5 4 3 2 q
q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 44]} |
In[16]:= | A2Invariant[Knot[10, 44]][q] |
Out[16]= | -22 -20 2 2 2 -12 2 -8 3 2 2
q - q - --- + --- - --- + q + --- - q + -- - -- + -- -
18 16 14 10 6 4 2
q q q q q q q
2 4 6 10
2 q + 2 q - q + q |
In[17]:= | HOMFLYPT[Knot[10, 44]][a, z] |
Out[17]= | 2
-2 2 4 2 z 2 2 4 2 6 2 4
-2 + a + 3 a - a - 4 z + -- + 5 a z - 3 a z + a z - 2 z +
2
a
2 4 4 4 2 6
3 a z - 2 a z + a z |
In[18]:= | Kauffman[Knot[10, 44]][a, z] |
Out[18]= | 2
-2 2 4 2 z 3 2 3 z 2 2
-2 - a - 3 a - a - --- - 4 a z - 2 a z + 9 z + ---- + 13 a z +
a 2
a
3
4 2 6 2 8 z 3 3 3 7 3 4
10 a z + 3 a z + ---- + 20 a z + 15 a z - 3 a z - 6 z -
a
4 5
3 z 2 4 4 4 6 4 8 4 9 z 5
---- - 12 a z - 18 a z - 8 a z + a z - ---- - 26 a z -
2 a
a
6
3 5 5 5 7 5 6 z 2 6 4 6
27 a z - 6 a z + 4 a z - 4 z + -- - 7 a z + 5 a z +
2
a
7
6 6 3 z 7 3 7 5 7 8 2 8
7 a z + ---- + 8 a z + 12 a z + 7 a z + 3 z + 7 a z +
a
4 8 9 3 9
4 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 44]], Vassiliev[3][Knot[10, 44]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[10, 44]][q, t] |
Out[20]= | 6 7 1 3 1 4 3 6 4
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t
7 6 6 7 4 t 2 3 2
----- + ----- + ---- + ---- + --- + 5 q t + 2 q t + 4 q t +
7 2 5 2 5 3 q
q t q t q t q t
3 3 5 3 7 4
q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 44], 2][q] |
Out[21]= | -20 4 3 10 24 11 35 65 20 76
-31 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
19 18 17 16 15 14 13 12 11
q q q q q q q q q
112 18 118 136 2 137 123 19 123 83
--- + -- + --- - --- + -- + --- - --- - -- + --- - -- + 84 q -
10 9 8 7 6 5 4 3 2 q
q q q q q q q q q
2 3 4 5 6 7 9 10
38 q - 28 q + 40 q - 9 q - 14 q + 11 q - 3 q + q |