10 8: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 8 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,6,-4,5,-3,1,-2,9,-7,10,-8,3,-5,4,-6,2,-9,7,-10,8/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=8|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,6,-4,5,-3,1,-2,9,-7,10,-8,3,-5,4,-6,2,-9,7,-10,8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^8-q^7-q^6+3 q^5-q^4-4 q^3+5 q^2+q-7+6 q^{-1} +3 q^{-2} -10 q^{-3} +6 q^{-4} +5 q^{-5} -11 q^{-6} +5 q^{-7} +7 q^{-8} -10 q^{-9} +3 q^{-10} +6 q^{-11} -8 q^{-12} +2 q^{-13} +5 q^{-14} -7 q^{-15} +2 q^{-16} +4 q^{-17} -5 q^{-18} +2 q^{-19} + q^{-20} -2 q^{-21} + q^{-22} </math> | |
|||
coloured_jones_3 = <math>q^{18}-q^{17}-q^{16}+3 q^{14}-3 q^{12}-3 q^{11}+5 q^{10}+3 q^9-2 q^8-7 q^7+3 q^6+6 q^5+q^4-8 q^3-q^2+5 q+4-6 q^{-1} -2 q^{-2} +3 q^{-3} +4 q^{-4} -4 q^{-5} - q^{-6} +2 q^{-7} +3 q^{-8} -3 q^{-9} - q^{-10} +2 q^{-11} + q^{-12} -3 q^{-13} + q^{-14} +2 q^{-15} -3 q^{-16} -3 q^{-17} +5 q^{-18} +4 q^{-19} -7 q^{-20} -4 q^{-21} +6 q^{-22} +6 q^{-23} -6 q^{-24} -5 q^{-25} +3 q^{-26} +5 q^{-27} - q^{-28} -3 q^{-29} - q^{-30} +3 q^{-31} + q^{-32} -2 q^{-33} - q^{-34} + q^{-35} + q^{-36} -2 q^{-37} + q^{-38} + q^{-40} -2 q^{-41} + q^{-42} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^8-q^7-q^6+3 q^5-q^4-4 q^3+5 q^2+q-7+6 q^{-1} +3 q^{-2} -10 q^{-3} +6 q^{-4} +5 q^{-5} -11 q^{-6} +5 q^{-7} +7 q^{-8} -10 q^{-9} +3 q^{-10} +6 q^{-11} -8 q^{-12} +2 q^{-13} +5 q^{-14} -7 q^{-15} +2 q^{-16} +4 q^{-17} -5 q^{-18} +2 q^{-19} + q^{-20} -2 q^{-21} + q^{-22} </math>|J3=<math>q^{18}-q^{17}-q^{16}+3 q^{14}-3 q^{12}-3 q^{11}+5 q^{10}+3 q^9-2 q^8-7 q^7+3 q^6+6 q^5+q^4-8 q^3-q^2+5 q+4-6 q^{-1} -2 q^{-2} +3 q^{-3} +4 q^{-4} -4 q^{-5} - q^{-6} +2 q^{-7} +3 q^{-8} -3 q^{-9} - q^{-10} +2 q^{-11} + q^{-12} -3 q^{-13} + q^{-14} +2 q^{-15} -3 q^{-16} -3 q^{-17} +5 q^{-18} +4 q^{-19} -7 q^{-20} -4 q^{-21} +6 q^{-22} +6 q^{-23} -6 q^{-24} -5 q^{-25} +3 q^{-26} +5 q^{-27} - q^{-28} -3 q^{-29} - q^{-30} +3 q^{-31} + q^{-32} -2 q^{-33} - q^{-34} + q^{-35} + q^{-36} -2 q^{-37} + q^{-38} + q^{-40} -2 q^{-41} + q^{-42} </math>|J4=<math>q^{32}-q^{31}-q^{30}+4 q^{27}-q^{26}-2 q^{25}-2 q^{24}-4 q^{23}+8 q^{22}+2 q^{21}-2 q^{19}-11 q^{18}+7 q^{17}+2 q^{16}+5 q^{15}+4 q^{14}-15 q^{13}+4 q^{12}-4 q^{11}+5 q^{10}+11 q^9-12 q^8+7 q^7-11 q^6-q^5+13 q^4-10 q^3+16 q^2-12 q-7+10 q^{-1} -14 q^{-2} +24 q^{-3} -8 q^{-4} -8 q^{-5} +9 q^{-6} -22 q^{-7} +25 q^{-8} -5 q^{-9} -5 q^{-10} +14 q^{-11} -27 q^{-12} +20 q^{-13} -7 q^{-14} -2 q^{-15} +21 q^{-16} -29 q^{-17} +15 q^{-18} -9 q^{-19} +26 q^{-21} -30 q^{-22} +9 q^{-23} -9 q^{-24} +6 q^{-25} +32 q^{-26} -34 q^{-27} - q^{-28} -11 q^{-29} +13 q^{-30} +40 q^{-31} -32 q^{-32} -10 q^{-33} -18 q^{-34} +13 q^{-35} +46 q^{-36} -23 q^{-37} -12 q^{-38} -22 q^{-39} +6 q^{-40} +41 q^{-41} -14 q^{-42} -5 q^{-43} -20 q^{-44} - q^{-45} +29 q^{-46} -9 q^{-47} +3 q^{-48} -13 q^{-49} -4 q^{-50} +16 q^{-51} -8 q^{-52} +7 q^{-53} -6 q^{-54} -3 q^{-55} +8 q^{-56} -8 q^{-57} +7 q^{-58} -2 q^{-59} -2 q^{-60} +3 q^{-61} -5 q^{-62} +4 q^{-63} - q^{-64} + q^{-66} -2 q^{-67} + q^{-68} </math>|J5=<math>q^{50}-q^{49}-q^{48}+q^{45}+3 q^{44}-3 q^{42}-2 q^{41}-2 q^{40}-q^{39}+6 q^{38}+5 q^{37}-3 q^{35}-5 q^{34}-7 q^{33}+2 q^{32}+7 q^{31}+5 q^{30}+4 q^{29}-2 q^{28}-9 q^{27}-5 q^{26}-q^{25}+2 q^{24}+8 q^{23}+7 q^{22}-2 q^{21}-2 q^{20}-6 q^{19}-9 q^{18}+7 q^{16}+6 q^{15}+8 q^{14}+2 q^{13}-11 q^{12}-11 q^{11}-3 q^{10}+2 q^9+13 q^8+11 q^7-q^6-10 q^5-11 q^4-6 q^3+8 q^2+11 q+4- q^{-1} -6 q^{-2} -8 q^{-3} +3 q^{-4} +4 q^{-5} -3 q^{-6} + q^{-7} +4 q^{-8} + q^{-9} +7 q^{-10} -3 q^{-11} -17 q^{-12} -9 q^{-13} +7 q^{-14} +18 q^{-15} +20 q^{-16} -2 q^{-17} -30 q^{-18} -27 q^{-19} + q^{-20} +29 q^{-21} +39 q^{-22} +8 q^{-23} -35 q^{-24} -45 q^{-25} -12 q^{-26} +32 q^{-27} +52 q^{-28} +18 q^{-29} -34 q^{-30} -55 q^{-31} -20 q^{-32} +34 q^{-33} +57 q^{-34} +21 q^{-35} -36 q^{-36} -63 q^{-37} -21 q^{-38} +42 q^{-39} +67 q^{-40} +25 q^{-41} -45 q^{-42} -79 q^{-43} -30 q^{-44} +51 q^{-45} +86 q^{-46} +37 q^{-47} -48 q^{-48} -92 q^{-49} -49 q^{-50} +47 q^{-51} +94 q^{-52} +51 q^{-53} -38 q^{-54} -89 q^{-55} -55 q^{-56} +31 q^{-57} +82 q^{-58} +53 q^{-59} -25 q^{-60} -71 q^{-61} -48 q^{-62} +20 q^{-63} +59 q^{-64} +41 q^{-65} -13 q^{-66} -51 q^{-67} -35 q^{-68} +13 q^{-69} +40 q^{-70} +26 q^{-71} -8 q^{-72} -31 q^{-73} -21 q^{-74} +7 q^{-75} +23 q^{-76} +14 q^{-77} -7 q^{-78} -13 q^{-79} -8 q^{-80} + q^{-81} +10 q^{-82} +6 q^{-83} -4 q^{-84} -3 q^{-85} -2 q^{-86} -2 q^{-87} +3 q^{-88} +4 q^{-89} -2 q^{-90} -3 q^{-93} + q^{-94} +2 q^{-95} - q^{-96} + q^{-98} -2 q^{-99} + q^{-100} </math>|J6=<math>q^{72}-q^{71}-q^{70}+q^{67}+4 q^{65}-q^{64}-3 q^{63}-2 q^{62}-2 q^{61}-2 q^{59}+10 q^{58}+3 q^{57}-2 q^{55}-5 q^{54}-4 q^{53}-12 q^{52}+10 q^{51}+5 q^{50}+6 q^{49}+5 q^{48}+2 q^{47}-q^{46}-21 q^{45}+3 q^{44}-5 q^{43}+2 q^{42}+4 q^{41}+12 q^{40}+14 q^{39}-15 q^{38}+8 q^{37}-12 q^{36}-9 q^{35}-13 q^{34}+4 q^{33}+18 q^{32}-6 q^{31}+26 q^{30}+q^{29}-2 q^{28}-25 q^{27}-12 q^{26}+2 q^{25}-18 q^{24}+31 q^{23}+14 q^{22}+20 q^{21}-14 q^{20}-9 q^{19}-6 q^{18}-39 q^{17}+16 q^{16}+6 q^{15}+26 q^{14}-3 q^{13}+8 q^{12}+9 q^{11}-38 q^{10}+10 q^9-10 q^8+12 q^7-17 q^6+7 q^5+24 q^4-21 q^3+30 q^2-3 q+7-42 q^{-1} -21 q^{-2} +13 q^{-3} -18 q^{-4} +54 q^{-5} +27 q^{-6} +33 q^{-7} -47 q^{-8} -51 q^{-9} -19 q^{-10} -43 q^{-11} +57 q^{-12} +54 q^{-13} +77 q^{-14} -24 q^{-15} -60 q^{-16} -48 q^{-17} -82 q^{-18} +34 q^{-19} +60 q^{-20} +116 q^{-21} +15 q^{-22} -47 q^{-23} -61 q^{-24} -117 q^{-25} -2 q^{-26} +44 q^{-27} +140 q^{-28} +54 q^{-29} -20 q^{-30} -56 q^{-31} -137 q^{-32} -38 q^{-33} +13 q^{-34} +142 q^{-35} +80 q^{-36} +11 q^{-37} -34 q^{-38} -135 q^{-39} -63 q^{-40} -21 q^{-41} +128 q^{-42} +84 q^{-43} +31 q^{-44} -9 q^{-45} -122 q^{-46} -70 q^{-47} -42 q^{-48} +118 q^{-49} +84 q^{-50} +38 q^{-51} - q^{-52} -123 q^{-53} -82 q^{-54} -52 q^{-55} +125 q^{-56} +105 q^{-57} +59 q^{-58} +2 q^{-59} -141 q^{-60} -118 q^{-61} -79 q^{-62} +126 q^{-63} +137 q^{-64} +100 q^{-65} +26 q^{-66} -141 q^{-67} -151 q^{-68} -120 q^{-69} +97 q^{-70} +139 q^{-71} +126 q^{-72} +59 q^{-73} -108 q^{-74} -143 q^{-75} -134 q^{-76} +60 q^{-77} +104 q^{-78} +108 q^{-79} +67 q^{-80} -68 q^{-81} -103 q^{-82} -107 q^{-83} +43 q^{-84} +66 q^{-85} +67 q^{-86} +45 q^{-87} -49 q^{-88} -65 q^{-89} -65 q^{-90} +47 q^{-91} +44 q^{-92} +34 q^{-93} +17 q^{-94} -47 q^{-95} -40 q^{-96} -33 q^{-97} +53 q^{-98} +32 q^{-99} +14 q^{-100} -44 q^{-102} -22 q^{-103} -13 q^{-104} +46 q^{-105} +19 q^{-106} + q^{-107} -4 q^{-108} -32 q^{-109} -6 q^{-110} -2 q^{-111} +29 q^{-112} +5 q^{-113} -4 q^{-114} - q^{-115} -19 q^{-116} +3 q^{-117} +15 q^{-119} -2 q^{-120} -3 q^{-121} +2 q^{-122} -11 q^{-123} +5 q^{-124} - q^{-125} +6 q^{-126} -2 q^{-127} +2 q^{-129} -6 q^{-130} +3 q^{-131} - q^{-132} +2 q^{-133} - q^{-134} + q^{-136} -2 q^{-137} + q^{-138} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{32}-q^{31}-q^{30}+4 q^{27}-q^{26}-2 q^{25}-2 q^{24}-4 q^{23}+8 q^{22}+2 q^{21}-2 q^{19}-11 q^{18}+7 q^{17}+2 q^{16}+5 q^{15}+4 q^{14}-15 q^{13}+4 q^{12}-4 q^{11}+5 q^{10}+11 q^9-12 q^8+7 q^7-11 q^6-q^5+13 q^4-10 q^3+16 q^2-12 q-7+10 q^{-1} -14 q^{-2} +24 q^{-3} -8 q^{-4} -8 q^{-5} +9 q^{-6} -22 q^{-7} +25 q^{-8} -5 q^{-9} -5 q^{-10} +14 q^{-11} -27 q^{-12} +20 q^{-13} -7 q^{-14} -2 q^{-15} +21 q^{-16} -29 q^{-17} +15 q^{-18} -9 q^{-19} +26 q^{-21} -30 q^{-22} +9 q^{-23} -9 q^{-24} +6 q^{-25} +32 q^{-26} -34 q^{-27} - q^{-28} -11 q^{-29} +13 q^{-30} +40 q^{-31} -32 q^{-32} -10 q^{-33} -18 q^{-34} +13 q^{-35} +46 q^{-36} -23 q^{-37} -12 q^{-38} -22 q^{-39} +6 q^{-40} +41 q^{-41} -14 q^{-42} -5 q^{-43} -20 q^{-44} - q^{-45} +29 q^{-46} -9 q^{-47} +3 q^{-48} -13 q^{-49} -4 q^{-50} +16 q^{-51} -8 q^{-52} +7 q^{-53} -6 q^{-54} -3 q^{-55} +8 q^{-56} -8 q^{-57} +7 q^{-58} -2 q^{-59} -2 q^{-60} +3 q^{-61} -5 q^{-62} +4 q^{-63} - q^{-64} + q^{-66} -2 q^{-67} + q^{-68} </math> | |
|||
coloured_jones_5 = <math>q^{50}-q^{49}-q^{48}+q^{45}+3 q^{44}-3 q^{42}-2 q^{41}-2 q^{40}-q^{39}+6 q^{38}+5 q^{37}-3 q^{35}-5 q^{34}-7 q^{33}+2 q^{32}+7 q^{31}+5 q^{30}+4 q^{29}-2 q^{28}-9 q^{27}-5 q^{26}-q^{25}+2 q^{24}+8 q^{23}+7 q^{22}-2 q^{21}-2 q^{20}-6 q^{19}-9 q^{18}+7 q^{16}+6 q^{15}+8 q^{14}+2 q^{13}-11 q^{12}-11 q^{11}-3 q^{10}+2 q^9+13 q^8+11 q^7-q^6-10 q^5-11 q^4-6 q^3+8 q^2+11 q+4- q^{-1} -6 q^{-2} -8 q^{-3} +3 q^{-4} +4 q^{-5} -3 q^{-6} + q^{-7} +4 q^{-8} + q^{-9} +7 q^{-10} -3 q^{-11} -17 q^{-12} -9 q^{-13} +7 q^{-14} +18 q^{-15} +20 q^{-16} -2 q^{-17} -30 q^{-18} -27 q^{-19} + q^{-20} +29 q^{-21} +39 q^{-22} +8 q^{-23} -35 q^{-24} -45 q^{-25} -12 q^{-26} +32 q^{-27} +52 q^{-28} +18 q^{-29} -34 q^{-30} -55 q^{-31} -20 q^{-32} +34 q^{-33} +57 q^{-34} +21 q^{-35} -36 q^{-36} -63 q^{-37} -21 q^{-38} +42 q^{-39} +67 q^{-40} +25 q^{-41} -45 q^{-42} -79 q^{-43} -30 q^{-44} +51 q^{-45} +86 q^{-46} +37 q^{-47} -48 q^{-48} -92 q^{-49} -49 q^{-50} +47 q^{-51} +94 q^{-52} +51 q^{-53} -38 q^{-54} -89 q^{-55} -55 q^{-56} +31 q^{-57} +82 q^{-58} +53 q^{-59} -25 q^{-60} -71 q^{-61} -48 q^{-62} +20 q^{-63} +59 q^{-64} +41 q^{-65} -13 q^{-66} -51 q^{-67} -35 q^{-68} +13 q^{-69} +40 q^{-70} +26 q^{-71} -8 q^{-72} -31 q^{-73} -21 q^{-74} +7 q^{-75} +23 q^{-76} +14 q^{-77} -7 q^{-78} -13 q^{-79} -8 q^{-80} + q^{-81} +10 q^{-82} +6 q^{-83} -4 q^{-84} -3 q^{-85} -2 q^{-86} -2 q^{-87} +3 q^{-88} +4 q^{-89} -2 q^{-90} -3 q^{-93} + q^{-94} +2 q^{-95} - q^{-96} + q^{-98} -2 q^{-99} + q^{-100} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{72}-q^{71}-q^{70}+q^{67}+4 q^{65}-q^{64}-3 q^{63}-2 q^{62}-2 q^{61}-2 q^{59}+10 q^{58}+3 q^{57}-2 q^{55}-5 q^{54}-4 q^{53}-12 q^{52}+10 q^{51}+5 q^{50}+6 q^{49}+5 q^{48}+2 q^{47}-q^{46}-21 q^{45}+3 q^{44}-5 q^{43}+2 q^{42}+4 q^{41}+12 q^{40}+14 q^{39}-15 q^{38}+8 q^{37}-12 q^{36}-9 q^{35}-13 q^{34}+4 q^{33}+18 q^{32}-6 q^{31}+26 q^{30}+q^{29}-2 q^{28}-25 q^{27}-12 q^{26}+2 q^{25}-18 q^{24}+31 q^{23}+14 q^{22}+20 q^{21}-14 q^{20}-9 q^{19}-6 q^{18}-39 q^{17}+16 q^{16}+6 q^{15}+26 q^{14}-3 q^{13}+8 q^{12}+9 q^{11}-38 q^{10}+10 q^9-10 q^8+12 q^7-17 q^6+7 q^5+24 q^4-21 q^3+30 q^2-3 q+7-42 q^{-1} -21 q^{-2} +13 q^{-3} -18 q^{-4} +54 q^{-5} +27 q^{-6} +33 q^{-7} -47 q^{-8} -51 q^{-9} -19 q^{-10} -43 q^{-11} +57 q^{-12} +54 q^{-13} +77 q^{-14} -24 q^{-15} -60 q^{-16} -48 q^{-17} -82 q^{-18} +34 q^{-19} +60 q^{-20} +116 q^{-21} +15 q^{-22} -47 q^{-23} -61 q^{-24} -117 q^{-25} -2 q^{-26} +44 q^{-27} +140 q^{-28} +54 q^{-29} -20 q^{-30} -56 q^{-31} -137 q^{-32} -38 q^{-33} +13 q^{-34} +142 q^{-35} +80 q^{-36} +11 q^{-37} -34 q^{-38} -135 q^{-39} -63 q^{-40} -21 q^{-41} +128 q^{-42} +84 q^{-43} +31 q^{-44} -9 q^{-45} -122 q^{-46} -70 q^{-47} -42 q^{-48} +118 q^{-49} +84 q^{-50} +38 q^{-51} - q^{-52} -123 q^{-53} -82 q^{-54} -52 q^{-55} +125 q^{-56} +105 q^{-57} +59 q^{-58} +2 q^{-59} -141 q^{-60} -118 q^{-61} -79 q^{-62} +126 q^{-63} +137 q^{-64} +100 q^{-65} +26 q^{-66} -141 q^{-67} -151 q^{-68} -120 q^{-69} +97 q^{-70} +139 q^{-71} +126 q^{-72} +59 q^{-73} -108 q^{-74} -143 q^{-75} -134 q^{-76} +60 q^{-77} +104 q^{-78} +108 q^{-79} +67 q^{-80} -68 q^{-81} -103 q^{-82} -107 q^{-83} +43 q^{-84} +66 q^{-85} +67 q^{-86} +45 q^{-87} -49 q^{-88} -65 q^{-89} -65 q^{-90} +47 q^{-91} +44 q^{-92} +34 q^{-93} +17 q^{-94} -47 q^{-95} -40 q^{-96} -33 q^{-97} +53 q^{-98} +32 q^{-99} +14 q^{-100} -44 q^{-102} -22 q^{-103} -13 q^{-104} +46 q^{-105} +19 q^{-106} + q^{-107} -4 q^{-108} -32 q^{-109} -6 q^{-110} -2 q^{-111} +29 q^{-112} +5 q^{-113} -4 q^{-114} - q^{-115} -19 q^{-116} +3 q^{-117} +15 q^{-119} -2 q^{-120} -3 q^{-121} +2 q^{-122} -11 q^{-123} +5 q^{-124} - q^{-125} +6 q^{-126} -2 q^{-127} +2 q^{-129} -6 q^{-130} +3 q^{-131} - q^{-132} +2 q^{-133} - q^{-134} + q^{-136} -2 q^{-137} + q^{-138} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 8]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], |
|||
X[13, 5, 14, 4], X[15, 3, 16, 2], X[9, 18, 10, 19], X[11, 20, 12, 1], |
X[13, 5, 14, 4], X[15, 3, 16, 2], X[9, 18, 10, 19], X[11, 20, 12, 1], |
||
X[17, 8, 18, 9], X[19, 10, 20, 11]]</nowiki></pre></td></tr> |
X[17, 8, 18, 9], X[19, 10, 20, 11]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, |
|||
7, -10, 8]</nowiki></pre></td></tr> |
7, -10, 8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 14, 12, 16, 18, 20, 4, 2, 8, 10]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 8]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, -1, 2, -1, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 8]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 5 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 8]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 5 2 3 |
|||
5 - -- + -- - - - 5 t + 5 t - 2 t |
5 - -- + -- - - - 5 t + 5 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 8]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 3 z - 7 z - 2 z</nowiki></pre></td></tr> |
1 - 3 z - 7 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 8]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 8]], KnotSignature[Knot[10, 8]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 8]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 3 4 4 4 4 3 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 8]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 3 4 4 4 4 3 2 |
|||
2 + q - -- + -- - -- + -- - -- + -- - - - q + q |
2 + q - -- + -- - -- + -- - -- + -- - - - q + q |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></pre></td></tr> |
q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 8]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 8]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -14 -12 -8 -6 2 4 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 8]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -14 -12 -8 -6 2 4 6 |
|||
1 + q + q - q - q - q + q + q + q</nowiki></pre></td></tr> |
1 + q + q - q - q - q + q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 8]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 2 2 2 4 2 6 2 4 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 2 2 2 4 2 6 2 4 2 4 |
|||
3 - 3 a + a + 4 z - 7 a z - 3 a z + 3 a z + z - 5 a z - |
3 - 3 a + a + 4 z - 7 a z - 3 a z + 3 a z + z - 5 a z - |
||
4 4 6 4 2 6 4 6 |
4 4 6 4 2 6 4 6 |
||
4 a z + a z - a z - a z</nowiki></pre></td></tr> |
4 a z + a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 8]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 3 5 7 2 2 2 4 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 3 5 7 2 2 2 4 2 |
|||
3 + 3 a - a - a z + a z + 2 a z - 13 z - 18 a z + 3 a z + |
3 + 3 a - a - a z + a z + 2 a z - 13 z - 18 a z + 3 a z + |
||
Line 166: | Line 115: | ||
7 3 7 5 7 8 2 8 4 8 9 3 9 |
7 3 7 5 7 8 2 8 4 8 9 3 9 |
||
6 a z - 3 a z + 3 a z + z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
6 a z - 3 a z + 3 a z + z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 8]], Vassiliev[3][Knot[10, 8]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, 4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 8]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 2 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 8]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 2 2 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
5 3 17 6 15 5 13 5 13 4 11 4 11 3 9 3 |
5 3 17 6 15 5 13 5 13 4 11 4 11 3 9 3 |
||
Line 180: | Line 127: | ||
9 2 7 2 7 5 3 q |
9 2 7 2 7 5 3 q |
||
q t q t q t q t q</nowiki></pre></td></tr> |
q t q t q t q t q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 8], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 2 -20 2 5 4 2 7 5 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 2 -20 2 5 4 2 7 5 2 |
|||
-7 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - |
-7 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - |
||
21 19 18 17 16 15 14 13 |
21 19 18 17 16 15 14 13 |
||
Line 194: | Line 140: | ||
2 3 4 5 6 7 8 |
2 3 4 5 6 7 8 |
||
5 q - 4 q - q + 3 q - q - q + q</nowiki></pre></td></tr> |
5 q - 4 q - q + 3 q - q - q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:37, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X7,16,8,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X9,18,10,19 X11,20,12,1 X17,8,18,9 X19,10,20,11 |
Gauss code | -1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, 7, -10, 8 |
Dowker-Thistlethwaite code | 6 14 12 16 18 20 4 2 8 10 |
Conway Notation | [514] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {11, 9}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 11}, {7, 1}] |
[edit Notes on presentations of 10 8]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 8"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X7,16,8,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X9,18,10,19 X11,20,12,1 X17,8,18,9 X19,10,20,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, 7, -10, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 14 12 16 18 20 4 2 8 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[514] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {11, 9}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 11}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 8"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 8"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|