K11a81: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Hoste-Thistlethwaite_Splice_Template". Please do not edit! -->
<!-- -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Hoste-Thistlethwaite Knot Page|
<!-- -->
n = 11 |
<!-- provide an anchor so we can return to the top of the page -->
t = a |
<span id="top"></span>
k = 81 |
<!-- -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-9,5,-2,6,-3,7,-4,8,-11,9,-7,10,-8,11,-5/goTop.html |
<!-- this relies on transclusion for next and previous links -->
same_alexander = [[K11a282]], |
{{Knot Navigation Links|ext=gif}}
same_jones = [[K11a282]], |
{{Hoste-Thistlethwaite Knot Page Header|n=11|t=a|k=81|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-9,5,-2,6,-3,7,-4,8,-11,9,-7,10,-8,11,-5/goTop.html}}
khovanov_table = <table border=1>

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=12.5%><table cellpadding=0 cellspacing=0>
<td width=12.5%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.25%>-5</td ><td width=6.25%>-4</td ><td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=12.5%>&chi;</td></tr>
<td width=6.25%>-5</td ><td width=6.25%>-4</td ><td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=12.5%>&chi;</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
Line 41: Line 30:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = |

coloured_jones_3 = |
{{Computer Talk Header}}
coloured_jones_4 = |

coloured_jones_5 = |
<table>
coloured_jones_6 = |
<tr valign=top>
coloured_jones_7 = |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 7, 15, 8],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[14, 7, 15, 8],
X[22, 10, 1, 9], X[2, 11, 3, 12], X[18, 13, 19, 14],
X[22, 10, 1, 9], X[2, 11, 3, 12], X[18, 13, 19, 14],
Line 61: Line 54:
X[16, 22, 17, 21]]</nowiki></pre></td></tr>
X[16, 22, 17, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9,
-7, 10, -8, 11, -5]</nowiki></pre></td></tr>
-7, 10, -8, 11, -5]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 81]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 81]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 81]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a81_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 6 16 26 2 3 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 81]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 6 16 26 2 3 4
-29 - t + -- - -- + -- + 26 t - 16 t + 6 t - t
-29 - t + -- - -- + -- + 26 t - 16 t + 6 t - t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 81]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 81]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8
1 - 2 z - z</nowiki></pre></td></tr>
1 - 2 z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 81]], KnotSignature[Knot[11, Alternating, 81]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 81]], KnotSignature[Knot[11, Alternating, 81]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{127, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{127, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 81]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 81]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 8 13 2 3 4 5 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 8 13 2 3 4 5 6
-17 - q + -- - -- + -- + 20 q - 20 q + 18 q - 13 q + 8 q - 4 q +
-17 - q + -- - -- + -- + 20 q - 20 q + 18 q - 13 q + 8 q - 4 q +
3 2 q
3 2 q
Line 87: Line 81:
7
7
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 81], Knot[11, Alternating, 282]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 81]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 81]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -6 3 3 2 4 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -6 3 3 2 4 6 8
1 - q + q + q - q + -- - -- + q - 2 q + 5 q - 3 q +
1 - q + q + q - q + -- - -- + q - 2 q + 5 q - 3 q +
4 2
4 2
Line 98: Line 92:
10 12 14 16 18 20
10 12 14 16 18 20
3 q - q - 2 q + 2 q - 2 q + q</nowiki></pre></td></tr>
3 q - q - 2 q + 2 q - 2 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 81]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 81]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
z 4 z 6 z 3 2 2 z z 9 z
z 4 z 6 z 3 2 2 z z 9 z
1 - -- - --- - --- - 4 a z - a z - 13 z + ---- + -- - ---- -
1 - -- - --- - --- - 4 a z - a z - 13 z + ---- + -- - ---- -
Line 134: Line 128:
a 2
a 2
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 81]], Vassiliev[3][Knot[11, Alternating, 81]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 81]], Vassiliev[3][Knot[11, Alternating, 81]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 81]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 81]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 8 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 8 5
11 q + 10 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- +
11 q + 10 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- +
9 5 7 4 5 4 5 3 3 3 3 2 2
9 5 7 4 5 4 5 3 3 3 3 2 2
Line 148: Line 142:
9 3 9 4 11 4 11 5 13 5 15 6
9 3 9 4 11 4 11 5 13 5 15 6
8 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr>
8 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr>
</table>
</table> }}

[[Category:Knot Page]]

Revision as of 11:52, 30 August 2005

K11a80.gif

K11a80

K11a82.gif

K11a82

K11a81.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a81 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,13,19,14 X20,16,21,15 X8,17,9,18 X6,20,7,19 X16,22,17,21
Gauss code 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5
Dowker-Thistlethwaite code 4 10 12 14 22 2 18 20 8 6 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a81 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a81/ThurstonBennequinNumber
Hyperbolic Volume 16.051
A-Polynomial See Data:K11a81/A-polynomial

[edit Notes for K11a81's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a81's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+6 t^3-16 t^2+26 t-29+26 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-2 z^6+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 127, 2 }
Jones polynomial [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+18 q^3-20 q^2+20 q-17+13 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} +6 z^2+1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+12 z^9 a^{-1} +7 z^9 a^{-3} +4 a^2 z^8+15 z^8 a^{-2} +11 z^8 a^{-4} +8 z^8+a^3 z^7-13 a z^7-26 z^7 a^{-1} -z^7 a^{-3} +11 z^7 a^{-5} -14 a^2 z^6-50 z^6 a^{-2} -14 z^6 a^{-4} +8 z^6 a^{-6} -42 z^6-3 a^3 z^5+3 a z^5-23 z^5 a^{-3} -13 z^5 a^{-5} +4 z^5 a^{-7} +15 a^2 z^4+39 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +44 z^4+3 a^3 z^3+9 a z^3+18 z^3 a^{-1} +19 z^3 a^{-3} +5 z^3 a^{-5} -2 z^3 a^{-7} -5 a^2 z^2-9 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -13 z^2-a^3 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} +1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{12}+q^{10}+q^8-q^6+3 q^4-3 q^2+1+ q^{-2} -2 q^{-4} +5 q^{-6} -3 q^{-8} +3 q^{-10} - q^{-12} -2 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} }[/math]
The G2 invariant [math]\displaystyle{ q^{60}-3 q^{58}+9 q^{56}-19 q^{54}+28 q^{52}-32 q^{50}+15 q^{48}+29 q^{46}-92 q^{44}+157 q^{42}-186 q^{40}+140 q^{38}-15 q^{36}-174 q^{34}+360 q^{32}-449 q^{30}+392 q^{28}-169 q^{26}-152 q^{24}+452 q^{22}-607 q^{20}+545 q^{18}-277 q^{16}-87 q^{14}+395 q^{12}-526 q^{10}+425 q^8-144 q^6-183 q^4+416 q^2-444+250 q^{-2} +81 q^{-4} -420 q^{-6} +618 q^{-8} -586 q^{-10} +326 q^{-12} +84 q^{-14} -495 q^{-16} +758 q^{-18} -764 q^{-20} +514 q^{-22} -89 q^{-24} -345 q^{-26} +628 q^{-28} -662 q^{-30} +448 q^{-32} -89 q^{-34} -249 q^{-36} +431 q^{-38} -389 q^{-40} +158 q^{-42} +136 q^{-44} -356 q^{-46} +405 q^{-48} -270 q^{-50} +10 q^{-52} +254 q^{-54} -425 q^{-56} +448 q^{-58} -321 q^{-60} +111 q^{-62} +110 q^{-64} -276 q^{-66} +338 q^{-68} -310 q^{-70} +215 q^{-72} -84 q^{-74} -35 q^{-76} +125 q^{-78} -169 q^{-80} +165 q^{-82} -127 q^{-84} +72 q^{-86} -16 q^{-88} -29 q^{-90} +53 q^{-92} -62 q^{-94} +51 q^{-96} -31 q^{-98} +15 q^{-100} + q^{-102} -8 q^{-104} +10 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a282,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a282,}

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 176 }[/math] [math]\displaystyle{ -160 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -48 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a81. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        83  -5
7       105   5
5      108    -2
3     1010     0
1    811      3
-1   59       -4
-3  38        5
-5 15         -4
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a80.gif

K11a80

K11a82.gif

K11a82