K11a100: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Hoste-Thistlethwaite_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
|||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Hoste-Thistlethwaite Knot Page| |
|||
<!-- --> |
|||
n = 11 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
t = a | |
|||
<span id="top"></span> |
|||
k = 100 | |
|||
<!-- --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-8,5,-2,6,-3,7,-9,8,-5,9,-11,10,-4,11,-7/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
same_alexander = [[K11a290]], | |
|||
{{Knot Navigation Links|ext=gif}} |
|||
same_jones = | |
|||
{{Hoste-Thistlethwaite Knot Page Header|n=11|t=a|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-1,3,-8,4,-2,5,-3,6,-10,7,-4,8,-6,9,-11,10,-7,11,-9/goTop.html}} |
|||
khovanov_table = <table border=1> |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=12.5%><table cellpadding=0 cellspacing=0> |
<td width=12.5%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=6.25%>8</td ><td width=6.25%>9</td ><td width=12.5%>χ</td></tr> |
|||
<tr align=center><td> |
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>1</td><td> </td><td>-5</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>9</td><td bgcolor=yellow>4</td><td> </td><td> </td><td>5</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>12</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td>-6</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>11</td><td bgcolor=yellow>9</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>11</td><td bgcolor=yellow>12</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>6</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>5</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-5</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>5</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>- |
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = | |
|||
coloured_jones_3 = | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = | |
|||
coloured_jones_5 = | |
|||
<table> |
|||
coloured_jones_6 = | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 7, 15, 8], |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 100]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 100]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], |
|||
X[ |
X[16, 10, 17, 9], X[2, 11, 3, 12], X[22, 14, 1, 13], X[8, 16, 9, 15], |
||
X[ |
X[14, 18, 15, 17], X[6, 20, 7, 19], X[18, 22, 19, 21]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 100]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -9, 8, -5, 9, |
|||
-11, 10, -4, 11, -7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 100]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 100]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 100]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a100_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 100]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 15 32 2 3 |
|||
41 - -- + -- - -- - 32 t + 15 t - 3 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 100]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z - 3 z - 3 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 100], Knot[11, Alternating, 290]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 100]], KnotSignature[Knot[11, Alternating, 100]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{141, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 100]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 |
|||
1 - 3 q + 8 q - 13 q + 19 q - 22 q + 23 q - 21 q + 15 q - |
|||
9 10 11 |
|||
-11, 10, -7, 11, -9]</nowiki></pre></td></tr> |
|||
10 q + 5 q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 100]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 12 30 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 100]][q]</nowiki></pre></td></tr> |
|||
-39 + -- - -- + -- + 30 t - 12 t + 2 t |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 16 18 20 |
|||
3 2 t |
|||
1 - q + q + 3 q - 3 q + 5 q - q - q + 3 q - 4 q + 3 q - |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 1]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 |
|||
1 + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 1], Knot[11, Alternating, 122], |
|||
22 24 26 28 30 32 34 |
|||
Knot[11, Alternating, 149]}</nowiki></pre></td></tr> |
|||
4 q - q + 2 q - 3 q + 3 q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 1]], KnotSignature[Knot[11, Alternating, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 100]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
||
-8 3 2 -2 4 z 10 z 7 z z 2 z 6 z 15 z |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 7 2 3 4 5 6 |
|||
a + -- + -- - a - --- - ---- - --- - -- + ---- - ---- - ----- - |
|||
6 4 9 7 5 3 10 8 6 |
|||
a a a a a a a a a |
|||
q |
|||
2 2 3 3 3 3 3 4 4 |
|||
7 8 |
|||
4 z 3 z 6 z 30 z 37 z 18 z 5 z 5 z 4 z |
|||
4 q - q</nowiki></pre></td></tr> |
|||
---- + ---- + ---- + ----- + ----- + ----- + ---- - ---- - ---- + |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
4 2 11 9 7 5 3 12 10 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 1], Knot[11, Alternating, 149]}</nowiki></pre></td></tr> |
|||
a a a a a a a a a |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -6 3 2 2 4 6 8 10 12 |
|||
-1 + q - q + -- - -- + 3 q - 4 q + 3 q - q + q + 3 q - |
|||
4 2 |
|||
q q |
|||
4 4 4 4 5 5 5 5 5 |
|||
3 |
27 z 36 z 7 z 3 z z 15 z 44 z 38 z 17 z |
||
----- + ----- + ---- - ---- + --- - ----- - ----- - ----- - ----- - |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 1]][a, z]</nowiki></pre></td></tr> |
|||
8 6 4 2 13 11 9 7 5 |
|||
a a a a a a a a a |
|||
-1 + a + -- - a - --- - --- - --- - --- - 2 a z + 5 z + -- - ---- - |
|||
4 7 5 3 a 8 6 |
|||
a a a a a a |
|||
5 6 6 6 6 6 6 7 7 |
|||
7 z 5 z 9 z 44 z 41 z 10 z z 10 z 14 z |
|||
----- - ---- |
---- + ---- - ---- - ----- - ----- - ----- + -- + ----- + ----- + |
||
3 12 10 8 6 4 2 11 9 |
|||
a |
a a a a a a a a a |
||
7 7 7 8 8 8 8 9 9 |
|||
2 z z 3 z 10 z 21 z 16 z 5 z 5 z 9 z |
|||
---- + -- + ---- + ----- + ----- + ----- + ---- + ---- + ---- + |
|||
7 5 3 10 8 6 4 9 7 |
|||
a a a a a a a a a |
|||
9 10 10 |
|||
5 5 6 6 6 6 |
|||
4 z z z |
|||
---- + --- + --- |
|||
5 8 6 |
|||
a a a</nowiki></pre></td></tr> |
|||
a a a a a |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 100]], Vassiliev[3][Knot[11, Alternating, 100]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 100]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 2 q q 5 7 7 2 9 2 |
|||
6 q + 3 q + ---- + --- + -- + 8 q t + 5 q t + 11 q t + 8 q t + |
|||
2 t t |
|||
q t |
|||
9 3 11 3 11 4 13 4 13 5 15 5 |
|||
11 q t + 11 q t + 12 q t + 11 q t + 9 q t + 12 q t + |
|||
a z + ---- + ---- - ---- + ---- + 3 a z + 4 z + ---- + ----- + |
|||
7 5 3 a 6 4 |
|||
a a a a a |
|||
15 6 17 6 17 7 19 7 19 8 21 8 23 9 |
|||
6 q t + 9 q t + 4 q t + 6 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
|||
</table> }} |
|||
2 5 3 a 4 2 |
|||
a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 1]], Vassiliev[3][Knot[11, Alternating, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 1]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 5 2 7 5 q |
|||
10 q + 8 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
3 5 5 2 7 2 7 3 9 3 |
|||
11 q t + 9 q t + 10 q t + 11 q t + 8 q t + 10 q t + |
|||
9 4 11 4 11 5 13 5 13 6 15 6 17 7 |
|||
6 q t + 8 q t + 3 q t + 6 q t + q t + 3 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
[[Category:Knot Page]] |
Revision as of 12:02, 30 August 2005
|
|
(Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X20,8,21,7 X16,10,17,9 X2,11,3,12 X22,14,1,13 X8,16,9,15 X14,18,15,17 X6,20,7,19 X18,22,19,21 |
Gauss code | 1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -9, 8, -5, 9, -11, 10, -4, 11, -7 |
Dowker-Thistlethwaite code | 4 10 12 20 16 2 22 8 14 6 18 |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a100"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 141, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a290,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a100"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a290,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a100. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|