K11a99
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X20,8,21,7 X16,10,17,9 X2,11,3,12 X18,13,19,14 X8,16,9,15 X22,17,1,18 X6,20,7,19 X14,21,15,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -11, 8, -5, 9, -7, 10, -4, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 12 20 16 2 18 8 22 6 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-17 t^2+28 t-31+28 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 135, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+9 q^5-14 q^4+19 q^3-22 q^2+21 q-18+14 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-10 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +7 z^2-4 a^{-2} +2 a^{-4} +3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+13 z^9 a^{-1} +8 z^9 a^{-3} +4 a^2 z^8+19 z^8 a^{-2} +13 z^8 a^{-4} +10 z^8+a^3 z^7-12 a z^7-27 z^7 a^{-1} -z^7 a^{-3} +13 z^7 a^{-5} -14 a^2 z^6-62 z^6 a^{-2} -18 z^6 a^{-4} +9 z^6 a^{-6} -49 z^6-3 a^3 z^5+a z^5-25 z^5 a^{-3} -17 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+55 z^4 a^{-2} +7 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +55 z^4+3 a^3 z^3+10 a z^3+15 z^3 a^{-1} +18 z^3 a^{-3} +9 z^3 a^{-5} -z^3 a^{-7} -6 a^2 z^2-23 z^2 a^{-2} -5 z^2 a^{-4} +3 z^2 a^{-6} -21 z^2-a^3 z-3 a z-3 z a^{-1} -3 z a^{-3} -2 z a^{-5} +4 a^{-2} +2 a^{-4} +3 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{12}+q^{10}+q^8-q^6+4 q^4-2 q^2+2+ q^{-2} -4 q^{-4} +3 q^{-6} -5 q^{-8} +3 q^{-10} - q^{-14} +3 q^{-16} -2 q^{-18} + q^{-20} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{60}-3 q^{58}+9 q^{56}-19 q^{54}+28 q^{52}-33 q^{50}+17 q^{48}+26 q^{46}-91 q^{44}+165 q^{42}-204 q^{40}+167 q^{38}-37 q^{36}-174 q^{34}+394 q^{32}-522 q^{30}+480 q^{28}-242 q^{26}-135 q^{24}+516 q^{22}-741 q^{20}+713 q^{18}-405 q^{16}-48 q^{14}+467 q^{12}-683 q^{10}+599 q^8-269 q^6-156 q^4+498 q^2-586+391 q^{-2} +18 q^{-4} -460 q^{-6} +748 q^{-8} -756 q^{-10} +454 q^{-12} +43 q^{-14} -573 q^{-16} +935 q^{-18} -987 q^{-20} +703 q^{-22} -172 q^{-24} -401 q^{-26} +798 q^{-28} -894 q^{-30} +643 q^{-32} -188 q^{-34} -279 q^{-36} +566 q^{-38} -560 q^{-40} +292 q^{-42} +105 q^{-44} -431 q^{-46} +544 q^{-48} -402 q^{-50} +68 q^{-52} +293 q^{-54} -544 q^{-56} +602 q^{-58} -444 q^{-60} +168 q^{-62} +140 q^{-64} -372 q^{-66} +462 q^{-68} -420 q^{-70} +276 q^{-72} -96 q^{-74} -65 q^{-76} +179 q^{-78} -227 q^{-80} +213 q^{-82} -152 q^{-84} +78 q^{-86} -5 q^{-88} -46 q^{-90} +68 q^{-92} -74 q^{-94} +57 q^{-96} -33 q^{-98} +13 q^{-100} +4 q^{-102} -10 q^{-104} +11 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a99"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-17 t^2+28 t-31+28 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 135, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+9 q^5-14 q^4+19 q^3-22 q^2+21 q-18+14 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-10 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +7 z^2-4 a^{-2} +2 a^{-4} +3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+13 z^9 a^{-1} +8 z^9 a^{-3} +4 a^2 z^8+19 z^8 a^{-2} +13 z^8 a^{-4} +10 z^8+a^3 z^7-12 a z^7-27 z^7 a^{-1} -z^7 a^{-3} +13 z^7 a^{-5} -14 a^2 z^6-62 z^6 a^{-2} -18 z^6 a^{-4} +9 z^6 a^{-6} -49 z^6-3 a^3 z^5+a z^5-25 z^5 a^{-3} -17 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+55 z^4 a^{-2} +7 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +55 z^4+3 a^3 z^3+10 a z^3+15 z^3 a^{-1} +18 z^3 a^{-3} +9 z^3 a^{-5} -z^3 a^{-7} -6 a^2 z^2-23 z^2 a^{-2} -5 z^2 a^{-4} +3 z^2 a^{-6} -21 z^2-a^3 z-3 a z-3 z a^{-1} -3 z a^{-3} -2 z a^{-5} +4 a^{-2} +2 a^{-4} +3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a277,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a99"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-17 t^2+28 t-31+28 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^7-4 q^6+9 q^5-14 q^4+19 q^3-22 q^2+21 q-18+14 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a277,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a99. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



