K11a277

From Knot Atlas
Jump to navigationJump to search

K11a276.gif

K11a276

K11a278.gif

K11a278

K11a277.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a277 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X16,5,17,6 X12,8,13,7 X4,10,5,9 X18,11,19,12 X20,14,21,13 X22,16,1,15 X2,17,3,18 X8,19,9,20 X14,22,15,21
Gauss code 1, -9, 2, -5, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -6, 10, -7, 11, -8
Dowker-Thistlethwaite code 6 10 16 12 4 18 20 22 2 8 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation K11a277 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a277/ThurstonBennequinNumber
Hyperbolic Volume 16.9207
A-Polynomial See Data:K11a277/A-polynomial

[edit Notes for K11a277's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a277's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+6 t^3-17 t^2+28 t-31+28 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-2 z^6-z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{3,t+1\} }[/math]
Determinant and Signature { 135, 2 }
Jones polynomial [math]\displaystyle{ -q^8+4 q^7-8 q^6+14 q^5-19 q^4+21 q^3-22 q^2+19 q-13+9 q^{-1} -4 q^{-2} + q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-10 z^2 a^{-2} +7 z^2 a^{-4} -2 z^2 a^{-6} +3 z^2-4 a^{-2} +2 a^{-4} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10} a^{-4} +8 z^9 a^{-1} +15 z^9 a^{-3} +7 z^9 a^{-5} +7 z^8 a^{-2} +7 z^8 a^{-4} +8 z^8 a^{-6} +8 z^8+4 a z^7-21 z^7 a^{-1} -40 z^7 a^{-3} -8 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-39 z^6 a^{-2} -28 z^6 a^{-4} -9 z^6 a^{-6} +4 z^6 a^{-8} -23 z^6-9 a z^5+18 z^5 a^{-1} +38 z^5 a^{-3} -10 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+49 z^4 a^{-2} +31 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} +20 z^4+2 a z^3-6 z^3 a^{-1} -6 z^3 a^{-3} +6 z^3 a^{-5} +3 z^3 a^{-7} -z^3 a^{-9} -21 z^2 a^{-2} -11 z^2 a^{-4} +3 z^2 a^{-6} +2 z^2 a^{-8} -9 z^2-z a^{-1} -5 z a^{-3} -5 z a^{-5} -z a^{-7} +4 a^{-2} +2 a^{-4} +3 }[/math]
The A2 invariant [math]\displaystyle{ q^8-2 q^6+3 q^4+1+4 q^{-2} -5 q^{-4} +3 q^{-6} -4 q^{-8} + q^{-12} -3 q^{-14} +4 q^{-16} - q^{-18} + q^{-20} + q^{-22} - q^{-24} }[/math]
The G2 invariant Data:K11a277/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a99,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{116}{3} }[/math] [math]\displaystyle{ \frac{76}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{608}{3} }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 80 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ -\frac{928}{3} }[/math] [math]\displaystyle{ -\frac{608}{3} }[/math] [math]\displaystyle{ -\frac{151}{15} }[/math] [math]\displaystyle{ -\frac{172}{5} }[/math] [math]\displaystyle{ -\frac{10204}{45} }[/math] [math]\displaystyle{ \frac{1399}{9} }[/math] [math]\displaystyle{ -\frac{1111}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a277. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        93  6
9       105   -5
7      119    2
5     1110     -1
3    811      -3
1   612       6
-1  37        -4
-3 16         5
-5 3          -3
-71           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a276.gif

K11a276

K11a278.gif

K11a278