K11a290
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X10,3,11,4 X16,5,17,6 X20,8,21,7 X18,9,19,10 X2,11,3,12 X8,13,9,14 X22,16,1,15 X4,17,5,18 X12,19,13,20 X14,22,15,21 |
| Gauss code | 1, -6, 2, -9, 3, -1, 4, -7, 5, -2, 6, -10, 7, -11, 8, -3, 9, -5, 10, -4, 11, -8 |
| Dowker-Thistlethwaite code | 6 10 16 20 18 2 8 22 4 12 14 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -3 t^3+15 t^2-32 t+41-32 t^{-1} +15 t^{-2} -3 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -3 z^6-3 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 141, 0 } |
| Jones polynomial | [math]\displaystyle{ q^4-4 q^3+9 q^2-15 q+20-22 q^{-1} +23 q^{-2} -19 q^{-3} +14 q^{-4} -9 q^{-5} +4 q^{-6} - q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^6-a^6+3 z^4 a^4+6 z^2 a^4+2 a^4-2 z^6 a^2-6 z^4 a^2-6 z^2 a^2-a^2-z^6-z^4+z^2+1+z^4 a^{-2} +z^2 a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 a^4 z^{10}+3 a^2 z^{10}+6 a^5 z^9+16 a^3 z^9+10 a z^9+4 a^6 z^8+5 a^4 z^8+16 a^2 z^8+15 z^8+a^7 z^7-17 a^5 z^7-41 a^3 z^7-9 a z^7+14 z^7 a^{-1} -13 a^6 z^6-39 a^4 z^6-60 a^2 z^6+9 z^6 a^{-2} -25 z^6-3 a^7 z^5+10 a^5 z^5+22 a^3 z^5-14 a z^5-19 z^5 a^{-1} +4 z^5 a^{-3} +13 a^6 z^4+45 a^4 z^4+54 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +14 z^4+3 a^7 z^3+3 a^5 z^3+2 a^3 z^3+12 a z^3+9 z^3 a^{-1} -z^3 a^{-3} -5 a^6 z^2-17 a^4 z^2-19 a^2 z^2+2 z^2 a^{-2} -5 z^2-a^7 z-a^5 z-a^3 z-2 a z-z a^{-1} +a^6+2 a^4+a^2+1 }[/math] |
| The A2 invariant | Data:K11a290/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a290/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a290"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -3 t^3+15 t^2-32 t+41-32 t^{-1} +15 t^{-2} -3 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -3 z^6-3 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 141, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^4-4 q^3+9 q^2-15 q+20-22 q^{-1} +23 q^{-2} -19 q^{-3} +14 q^{-4} -9 q^{-5} +4 q^{-6} - q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^6-a^6+3 z^4 a^4+6 z^2 a^4+2 a^4-2 z^6 a^2-6 z^4 a^2-6 z^2 a^2-a^2-z^6-z^4+z^2+1+z^4 a^{-2} +z^2 a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 a^4 z^{10}+3 a^2 z^{10}+6 a^5 z^9+16 a^3 z^9+10 a z^9+4 a^6 z^8+5 a^4 z^8+16 a^2 z^8+15 z^8+a^7 z^7-17 a^5 z^7-41 a^3 z^7-9 a z^7+14 z^7 a^{-1} -13 a^6 z^6-39 a^4 z^6-60 a^2 z^6+9 z^6 a^{-2} -25 z^6-3 a^7 z^5+10 a^5 z^5+22 a^3 z^5-14 a z^5-19 z^5 a^{-1} +4 z^5 a^{-3} +13 a^6 z^4+45 a^4 z^4+54 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +14 z^4+3 a^7 z^3+3 a^5 z^3+2 a^3 z^3+12 a z^3+9 z^3 a^{-1} -z^3 a^{-3} -5 a^6 z^2-17 a^4 z^2-19 a^2 z^2+2 z^2 a^{-2} -5 z^2-a^7 z-a^5 z-a^3 z-2 a z-z a^{-1} +a^6+2 a^4+a^2+1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a100,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a290"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -3 t^3+15 t^2-32 t+41-32 t^{-1} +15 t^{-2} -3 t^{-3} }[/math], [math]\displaystyle{ q^4-4 q^3+9 q^2-15 q+20-22 q^{-1} +23 q^{-2} -19 q^{-3} +14 q^{-4} -9 q^{-5} +4 q^{-6} - q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a100,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a290. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



