K11a289

From Knot Atlas
Jump to navigationJump to search

K11a288.gif

K11a288

K11a290.gif

K11a290

K11a289.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a289 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X16,5,17,6 X20,8,21,7 X4,10,5,9 X18,11,19,12 X8,13,9,14 X22,16,1,15 X2,17,3,18 X12,19,13,20 X14,22,15,21
Gauss code 1, -9, 2, -5, 3, -1, 4, -7, 5, -2, 6, -10, 7, -11, 8, -3, 9, -6, 10, -4, 11, -8
Dowker-Thistlethwaite code 6 10 16 20 4 18 8 22 2 12 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation K11a289 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11a289's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+2 z^6+z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 145, 0 }
Jones polynomial [math]\displaystyle{ q^6-4 q^5+9 q^4-15 q^3+20 q^2-23 q+24-20 q^{-1} +15 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +10 z^4-3 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} +9 z^2-a^2-3 a^{-2} + a^{-4} +4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10}+9 a z^9+16 z^9 a^{-1} +7 z^9 a^{-3} +11 a^2 z^8+9 z^8 a^{-2} +7 z^8 a^{-4} +13 z^8+8 a^3 z^7-14 a z^7-37 z^7 a^{-1} -11 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-22 a^2 z^6-38 z^6 a^{-2} -15 z^6 a^{-4} +z^6 a^{-6} -48 z^6+a^5 z^5-12 a^3 z^5+7 a z^5+28 z^5 a^{-1} -z^5 a^{-3} -9 z^5 a^{-5} -5 a^4 z^4+20 a^2 z^4+41 z^4 a^{-2} +8 z^4 a^{-4} -2 z^4 a^{-6} +56 z^4-a^5 z^3+4 a^3 z^3+3 a z^3-3 z^3 a^{-1} +4 z^3 a^{-3} +5 z^3 a^{-5} -9 a^2 z^2-19 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -23 z^2-a^3 z-2 a z-2 z a^{-1} -2 z a^{-3} -z a^{-5} +a^2+3 a^{-2} + a^{-4} +4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{14}+2 q^{12}-3 q^{10}+2 q^8+q^6-3 q^4+6 q^2-3+4 q^{-2} - q^{-4} -2 q^{-6} +3 q^{-8} -4 q^{-10} +2 q^{-12} - q^{-16} + q^{-18} }[/math]
The G2 invariant Data:K11a289/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a76, K11a160,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a76, K11a160,}

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{16}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ -40 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ \frac{152}{3} }[/math] [math]\displaystyle{ -\frac{232}{3} }[/math] [math]\displaystyle{ -8 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a289. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         61 5
7        93  -6
5       116   5
3      129    -3
1     1211     1
-1    913      4
-3   611       -5
-5  39        6
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a288.gif

K11a288

K11a290.gif

K11a290