K11a76
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X18,9,19,10 X2,11,3,12 X20,14,21,13 X8,15,9,16 X22,18,1,17 X6,19,7,20 X16,22,17,21 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -4, 8, -11, 9, -5, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 12 14 18 2 20 8 22 6 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 145, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+4 q^4-9 q^3+15 q^2-20 q+24-23 q^{-1} +20 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +10 z^4+2 a^4 z^2-8 a^2 z^2-3 z^2 a^{-2} +9 z^2+a^4-3 a^2- a^{-2} +4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+13 a z^9+7 z^9 a^{-1} +7 a^4 z^8+14 a^2 z^8+10 z^8 a^{-2} +17 z^8+4 a^5 z^7-5 a^3 z^7-19 a z^7-2 z^7 a^{-1} +8 z^7 a^{-3} +a^6 z^6-15 a^4 z^6-41 a^2 z^6-16 z^6 a^{-2} +4 z^6 a^{-4} -45 z^6-9 a^5 z^5-10 a^3 z^5+a z^5-11 z^5 a^{-1} -12 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+9 a^4 z^4+35 a^2 z^4+12 z^4 a^{-2} -5 z^4 a^{-4} +41 z^4+6 a^5 z^3+9 a^3 z^3+6 a z^3+10 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-3 a^4 z^2-15 a^2 z^2-5 z^2 a^{-2} +z^2 a^{-4} -17 z^2-a^5 z-2 a^3 z-2 a z-2 z a^{-1} -z a^{-3} +a^4+3 a^2+ a^{-2} +4 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}-q^{16}+2 q^{12}-4 q^{10}+3 q^8-2 q^6-q^4+4 q^2-3+6 q^{-2} -3 q^{-4} + q^{-6} +2 q^{-8} -3 q^{-10} +2 q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-3 q^{92}+8 q^{90}-16 q^{88}+22 q^{86}-25 q^{84}+14 q^{82}+18 q^{80}-67 q^{78}+130 q^{76}-176 q^{74}+169 q^{72}-88 q^{70}-77 q^{68}+294 q^{66}-480 q^{64}+556 q^{62}-446 q^{60}+129 q^{58}+307 q^{56}-717 q^{54}+935 q^{52}-836 q^{50}+440 q^{48}+134 q^{46}-670 q^{44}+941 q^{42}-842 q^{40}+406 q^{38}+170 q^{36}-633 q^{34}+764 q^{32}-509 q^{30}-20 q^{28}+597 q^{26}-952 q^{24}+914 q^{22}-475 q^{20}-231 q^{18}+920 q^{16}-1333 q^{14}+1302 q^{12}-812 q^{10}+53 q^8+721 q^6-1226 q^4+1288 q^2-905+241 q^{-2} +429 q^{-4} -839 q^{-6} +843 q^{-8} -458 q^{-10} -93 q^{-12} +573 q^{-14} -751 q^{-16} +553 q^{-18} -85 q^{-20} -462 q^{-22} +844 q^{-24} -903 q^{-26} +640 q^{-28} -155 q^{-30} -349 q^{-32} +694 q^{-34} -793 q^{-36} +646 q^{-38} -344 q^{-40} +3 q^{-42} +259 q^{-44} -394 q^{-46} +389 q^{-48} -285 q^{-50} +149 q^{-52} -15 q^{-54} -76 q^{-56} +114 q^{-58} -115 q^{-60} +84 q^{-62} -46 q^{-64} +16 q^{-66} +7 q^{-68} -16 q^{-70} +16 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a76"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 145, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+4 q^4-9 q^3+15 q^2-20 q+24-23 q^{-1} +20 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +10 z^4+2 a^4 z^2-8 a^2 z^2-3 z^2 a^{-2} +9 z^2+a^4-3 a^2- a^{-2} +4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+13 a z^9+7 z^9 a^{-1} +7 a^4 z^8+14 a^2 z^8+10 z^8 a^{-2} +17 z^8+4 a^5 z^7-5 a^3 z^7-19 a z^7-2 z^7 a^{-1} +8 z^7 a^{-3} +a^6 z^6-15 a^4 z^6-41 a^2 z^6-16 z^6 a^{-2} +4 z^6 a^{-4} -45 z^6-9 a^5 z^5-10 a^3 z^5+a z^5-11 z^5 a^{-1} -12 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+9 a^4 z^4+35 a^2 z^4+12 z^4 a^{-2} -5 z^4 a^{-4} +41 z^4+6 a^5 z^3+9 a^3 z^3+6 a z^3+10 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-3 a^4 z^2-15 a^2 z^2-5 z^2 a^{-2} +z^2 a^{-4} -17 z^2-a^5 z-2 a^3 z-2 a z-2 z a^{-1} -z a^{-3} +a^4+3 a^2+ a^{-2} +4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a160, K11a289,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a160, K11a289,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a76"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+4 q^4-9 q^3+15 q^2-20 q+24-23 q^{-1} +20 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a160, K11a289,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a160, K11a289,} |
Vassiliev invariants
| V2 and V3: | (0, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a76. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



