K11a75

From Knot Atlas
Jump to navigationJump to search

K11a74.gif

K11a74

K11a76.gif

K11a76

K11a75.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a75 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X14,8,15,7 X18,9,19,10 X2,11,3,12 X6,14,7,13 X22,16,1,15 X20,18,21,17 X8,19,9,20 X16,22,17,21
Gauss code 1, -6, 2, -1, 3, -7, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -5, 10, -9, 11, -8
Dowker-Thistlethwaite code 4 10 12 14 18 2 6 22 20 8 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a75 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a75's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-10 t^2+19 t-21+19 t^{-1} -10 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+2 z^4-3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 83, 2 }
Jones polynomial [math]\displaystyle{ -q^8+3 q^7-5 q^6+9 q^5-12 q^4+13 q^3-13 q^2+11 q-8+5 q^{-1} -2 q^{-2} + q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2+3 z^2 a^{-4} -2 z^2 a^{-6} -5 z^2+2 a^2+ a^{-4} -2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +5 z^9 a^{-3} +3 z^9 a^{-5} +z^8 a^{-2} +3 z^8 a^{-4} +4 z^8 a^{-6} +2 z^8+2 a z^7-3 z^7 a^{-1} -14 z^7 a^{-3} -5 z^7 a^{-5} +4 z^7 a^{-7} +a^2 z^6-4 z^6 a^{-2} -11 z^6 a^{-4} -7 z^6 a^{-6} +3 z^6 a^{-8} -2 z^6-6 a z^5+2 z^5 a^{-1} +21 z^5 a^{-3} +4 z^5 a^{-5} -8 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4+4 z^4 a^{-2} +17 z^4 a^{-4} +3 z^4 a^{-6} -7 z^4 a^{-8} -7 z^4+4 a z^3-6 z^3 a^{-1} -13 z^3 a^{-3} +3 z^3 a^{-5} +4 z^3 a^{-7} -2 z^3 a^{-9} +5 a^2 z^2-4 z^2 a^{-2} -8 z^2 a^{-4} +2 z^2 a^{-6} +3 z^2 a^{-8} +8 z^2+3 z a^{-1} +2 z a^{-3} -2 z a^{-5} -z a^{-7} -2 a^2+ a^{-4} -2 }[/math]
The A2 invariant Data:K11a75/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a75/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-3, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -12 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 82 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ \frac{208}{3} }[/math] [math]\displaystyle{ -\frac{128}{3} }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ -288 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -984 }[/math] [math]\displaystyle{ -264 }[/math] [math]\displaystyle{ -\frac{9791}{10} }[/math] [math]\displaystyle{ -\frac{4574}{15} }[/math] [math]\displaystyle{ -\frac{1474}{5} }[/math] [math]\displaystyle{ \frac{53}{2} }[/math] [math]\displaystyle{ -\frac{191}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a75. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         31 -2
11        62  4
9       63   -3
7      76    1
5     66     0
3    57      -2
1   47       3
-1  14        -3
-3 14         3
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a74.gif

K11a74

K11a76.gif

K11a76