K11a74
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X14,8,15,7 X18,9,19,10 X2,11,3,12 X6,14,7,13 X20,16,21,15 X22,18,1,17 X8,19,9,20 X16,22,17,21 |
| Gauss code | 1, -6, 2, -1, 3, -7, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -5, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 12 14 18 2 6 20 22 8 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+10 t^2-13 t+15-13 t^{-1} +10 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 73, 4 } |
| Jones polynomial | [math]\displaystyle{ -q^9+3 q^8-5 q^7+8 q^6-10 q^5+11 q^4-11 q^3+9 q^2-7 q+5-2 q^{-1} + q^{-2} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +13 z^4 a^{-4} -4 z^4 a^{-6} +z^4-15 z^2 a^{-2} +13 z^2 a^{-4} -4 z^2 a^{-6} +4 z^2-7 a^{-2} +5 a^{-4} - a^{-6} +4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +z^8 a^{-2} +7 z^8 a^{-4} +7 z^8 a^{-6} +z^8-10 z^7 a^{-1} -23 z^7 a^{-3} -5 z^7 a^{-5} +8 z^7 a^{-7} -23 z^6 a^{-2} -40 z^6 a^{-4} -16 z^6 a^{-6} +7 z^6 a^{-8} -6 z^6+15 z^5 a^{-1} +18 z^5 a^{-3} -18 z^5 a^{-5} -16 z^5 a^{-7} +5 z^5 a^{-9} +47 z^4 a^{-2} +51 z^4 a^{-4} +5 z^4 a^{-6} -9 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-6 z^3 a^{-1} +8 z^3 a^{-3} +26 z^3 a^{-5} +8 z^3 a^{-7} -3 z^3 a^{-9} +z^3 a^{-11} -32 z^2 a^{-2} -23 z^2 a^{-4} +2 z^2 a^{-8} -z^2 a^{-10} -12 z^2-z a^{-1} -7 z a^{-3} -9 z a^{-5} -3 z a^{-7} +7 a^{-2} +5 a^{-4} + a^{-6} +4 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^6+q^4+q^2+2- q^{-2} -2 q^{-6} -2 q^{-8} + q^{-10} -2 q^{-12} +3 q^{-14} + q^{-18} + q^{-20} - q^{-22} + q^{-24} - q^{-26} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{26}-q^{24}+5 q^{22}-7 q^{20}+10 q^{18}-9 q^{16}+2 q^{14}+15 q^{12}-31 q^{10}+46 q^8-42 q^6+23 q^4+15 q^2-53+84 q^{-2} -81 q^{-4} +53 q^{-6} -2 q^{-8} -52 q^{-10} +82 q^{-12} -81 q^{-14} +50 q^{-16} -4 q^{-18} -40 q^{-20} +57 q^{-22} -50 q^{-24} +11 q^{-26} +25 q^{-28} -58 q^{-30} +60 q^{-32} -40 q^{-34} -7 q^{-36} +51 q^{-38} -87 q^{-40} +94 q^{-42} -70 q^{-44} +20 q^{-46} +40 q^{-48} -85 q^{-50} +103 q^{-52} -82 q^{-54} +41 q^{-56} +18 q^{-58} -54 q^{-60} +67 q^{-62} -48 q^{-64} +15 q^{-66} +24 q^{-68} -40 q^{-70} +35 q^{-72} -9 q^{-74} -21 q^{-76} +43 q^{-78} -46 q^{-80} +32 q^{-82} -8 q^{-84} -19 q^{-86} +35 q^{-88} -43 q^{-90} +38 q^{-92} -25 q^{-94} +9 q^{-96} +5 q^{-98} -20 q^{-100} +27 q^{-102} -31 q^{-104} +28 q^{-106} -18 q^{-108} +7 q^{-110} +7 q^{-112} -19 q^{-114} +23 q^{-116} -23 q^{-118} +18 q^{-120} -8 q^{-122} +7 q^{-126} -12 q^{-128} +13 q^{-130} -10 q^{-132} +7 q^{-134} -2 q^{-136} - q^{-138} +2 q^{-140} -4 q^{-142} +3 q^{-144} -2 q^{-146} + q^{-148} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a74"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+10 t^2-13 t+15-13 t^{-1} +10 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 73, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^9+3 q^8-5 q^7+8 q^6-10 q^5+11 q^4-11 q^3+9 q^2-7 q+5-2 q^{-1} + q^{-2} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +13 z^4 a^{-4} -4 z^4 a^{-6} +z^4-15 z^2 a^{-2} +13 z^2 a^{-4} -4 z^2 a^{-6} +4 z^2-7 a^{-2} +5 a^{-4} - a^{-6} +4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +z^8 a^{-2} +7 z^8 a^{-4} +7 z^8 a^{-6} +z^8-10 z^7 a^{-1} -23 z^7 a^{-3} -5 z^7 a^{-5} +8 z^7 a^{-7} -23 z^6 a^{-2} -40 z^6 a^{-4} -16 z^6 a^{-6} +7 z^6 a^{-8} -6 z^6+15 z^5 a^{-1} +18 z^5 a^{-3} -18 z^5 a^{-5} -16 z^5 a^{-7} +5 z^5 a^{-9} +47 z^4 a^{-2} +51 z^4 a^{-4} +5 z^4 a^{-6} -9 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-6 z^3 a^{-1} +8 z^3 a^{-3} +26 z^3 a^{-5} +8 z^3 a^{-7} -3 z^3 a^{-9} +z^3 a^{-11} -32 z^2 a^{-2} -23 z^2 a^{-4} +2 z^2 a^{-8} -z^2 a^{-10} -12 z^2-z a^{-1} -7 z a^{-3} -9 z a^{-5} -3 z a^{-7} +7 a^{-2} +5 a^{-4} + a^{-6} +4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a74"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+10 t^2-13 t+15-13 t^{-1} +10 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^9+3 q^8-5 q^7+8 q^6-10 q^5+11 q^4-11 q^3+9 q^2-7 q+5-2 q^{-1} + q^{-2} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a74. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



