K11a73
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X16,10,17,9 X2,11,3,12 X18,13,19,14 X20,16,21,15 X22,17,1,18 X6,20,7,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -11, 5, -2, 6, -3, 7, -4, 8, -5, 9, -7, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 12 14 16 2 18 20 22 6 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-7 t^3+21 t^2-37 t+45-37 t^{-1} +21 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+z^6-z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 177, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-25 q+29-28 q^{-1} +25 q^{-2} -18 q^{-3} +11 q^{-4} -5 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +4 z^6+a^4 z^4-5 a^2 z^4-2 z^4 a^{-2} +5 z^4+a^4 z^2-a^2 z^2-a^4+3 a^2+ a^{-2} -2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 a^2 z^{10}+3 z^{10}+9 a^3 z^9+19 a z^9+10 z^9 a^{-1} +10 a^4 z^8+21 a^2 z^8+14 z^8 a^{-2} +25 z^8+5 a^5 z^7-8 a^3 z^7-23 a z^7+z^7 a^{-1} +11 z^7 a^{-3} +a^6 z^6-21 a^4 z^6-60 a^2 z^6-18 z^6 a^{-2} +5 z^6 a^{-4} -61 z^6-9 a^5 z^5-14 a^3 z^5-16 a z^5-26 z^5 a^{-1} -14 z^5 a^{-3} +z^5 a^{-5} -a^6 z^4+13 a^4 z^4+42 a^2 z^4+6 z^4 a^{-2} -4 z^4 a^{-4} +38 z^4+4 a^5 z^3+14 a^3 z^3+23 a z^3+18 z^3 a^{-1} +5 z^3 a^{-3} -2 a^4 z^2-5 a^2 z^2-3 z^2-2 a^3 z-4 a z-2 z a^{-1} -a^4-3 a^2- a^{-2} -2 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}-2 q^{16}-q^{14}+2 q^{12}-4 q^{10}+6 q^8+4 q^2-6+5 q^{-2} -5 q^{-4} + q^{-6} +3 q^{-8} -3 q^{-10} +3 q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-4 q^{92}+11 q^{90}-24 q^{88}+36 q^{86}-43 q^{84}+30 q^{82}+20 q^{80}-101 q^{78}+212 q^{76}-304 q^{74}+312 q^{72}-190 q^{70}-98 q^{68}+491 q^{66}-854 q^{64}+1023 q^{62}-847 q^{60}+283 q^{58}+525 q^{56}-1305 q^{54}+1734 q^{52}-1579 q^{50}+834 q^{48}+250 q^{46}-1270 q^{44}+1787 q^{42}-1587 q^{40}+759 q^{38}+346 q^{36}-1218 q^{34}+1474 q^{32}-989 q^{30}-18 q^{28}+1115 q^{26}-1794 q^{24}+1733 q^{22}-901 q^{20}-408 q^{18}+1698 q^{16}-2465 q^{14}+2411 q^{12}-1509 q^{10}+86 q^8+1352 q^6-2298 q^4+2402 q^2-1665+400 q^{-2} +860 q^{-4} -1617 q^{-6} +1594 q^{-8} -856 q^{-10} -216 q^{-12} +1119 q^{-14} -1449 q^{-16} +1056 q^{-18} -149 q^{-20} -885 q^{-22} +1595 q^{-24} -1680 q^{-26} +1162 q^{-28} -252 q^{-30} -678 q^{-32} +1298 q^{-34} -1452 q^{-36} +1156 q^{-38} -583 q^{-40} -34 q^{-42} +503 q^{-44} -720 q^{-46} +692 q^{-48} -493 q^{-50} +241 q^{-52} -8 q^{-54} -149 q^{-56} +206 q^{-58} -199 q^{-60} +140 q^{-62} -72 q^{-64} +21 q^{-66} +16 q^{-68} -28 q^{-70} +27 q^{-72} -20 q^{-74} +10 q^{-76} -4 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a73"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-7 t^3+21 t^2-37 t+45-37 t^{-1} +21 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+z^6-z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 177, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-25 q+29-28 q^{-1} +25 q^{-2} -18 q^{-3} +11 q^{-4} -5 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +4 z^6+a^4 z^4-5 a^2 z^4-2 z^4 a^{-2} +5 z^4+a^4 z^2-a^2 z^2-a^4+3 a^2+ a^{-2} -2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 a^2 z^{10}+3 z^{10}+9 a^3 z^9+19 a z^9+10 z^9 a^{-1} +10 a^4 z^8+21 a^2 z^8+14 z^8 a^{-2} +25 z^8+5 a^5 z^7-8 a^3 z^7-23 a z^7+z^7 a^{-1} +11 z^7 a^{-3} +a^6 z^6-21 a^4 z^6-60 a^2 z^6-18 z^6 a^{-2} +5 z^6 a^{-4} -61 z^6-9 a^5 z^5-14 a^3 z^5-16 a z^5-26 z^5 a^{-1} -14 z^5 a^{-3} +z^5 a^{-5} -a^6 z^4+13 a^4 z^4+42 a^2 z^4+6 z^4 a^{-2} -4 z^4 a^{-4} +38 z^4+4 a^5 z^3+14 a^3 z^3+23 a z^3+18 z^3 a^{-1} +5 z^3 a^{-3} -2 a^4 z^2-5 a^2 z^2-3 z^2-2 a^3 z-4 a z-2 z a^{-1} -a^4-3 a^2- a^{-2} -2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a73"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-7 t^3+21 t^2-37 t+45-37 t^{-1} +21 t^{-2} -7 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+5 q^4-11 q^3+18 q^2-25 q+29-28 q^{-1} +25 q^{-2} -18 q^{-3} +11 q^{-4} -5 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a73. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



