K11a160
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X18,5,19,6 X14,7,15,8 X2,10,3,9 X22,11,1,12 X20,14,21,13 X8,15,9,16 X12,18,13,17 X6,19,7,20 X16,22,17,21 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -4, 8, -11, 9, -3, 10, -7, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 18 14 2 22 20 8 12 6 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 145, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+9 q^4-15 q^3+20 q^2-23 q+24-20 q^{-1} +15 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +10 z^4-3 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} +9 z^2-a^2-3 a^{-2} + a^{-4} +4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+7 a z^9+13 z^9 a^{-1} +6 z^9 a^{-3} +10 a^2 z^8+15 z^8 a^{-2} +7 z^8 a^{-4} +18 z^8+8 a^3 z^7-a z^7-17 z^7 a^{-1} -4 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-16 a^2 z^6-47 z^6 a^{-2} -15 z^6 a^{-4} +z^6 a^{-6} -51 z^6+a^5 z^5-12 a^3 z^5-17 a z^5-11 z^5 a^{-1} -16 z^5 a^{-3} -9 z^5 a^{-5} -5 a^4 z^4+12 a^2 z^4+44 z^4 a^{-2} +9 z^4 a^{-4} -2 z^4 a^{-6} +50 z^4-a^5 z^3+6 a^3 z^3+19 a z^3+24 z^3 a^{-1} +18 z^3 a^{-3} +6 z^3 a^{-5} +a^4 z^2-6 a^2 z^2-18 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -20 z^2-2 a^3 z-6 a z-8 z a^{-1} -6 z a^{-3} -2 z a^{-5} +a^2+3 a^{-2} + a^{-4} +4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+2 q^{12}-3 q^{10}+2 q^8+q^6-3 q^4+6 q^2-3+4 q^{-2} - q^{-4} -2 q^{-6} +3 q^{-8} -4 q^{-10} +2 q^{-12} - q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+16 q^{72}-16 q^{70}+7 q^{68}+16 q^{66}-46 q^{64}+84 q^{62}-113 q^{60}+111 q^{58}-73 q^{56}-15 q^{54}+143 q^{52}-275 q^{50}+376 q^{48}-386 q^{46}+258 q^{44}-5 q^{42}-327 q^{40}+628 q^{38}-780 q^{36}+692 q^{34}-355 q^{32}-146 q^{30}+635 q^{28}-907 q^{26}+852 q^{24}-467 q^{22}-87 q^{20}+565 q^{18}-770 q^{16}+591 q^{14}-104 q^{12}-456 q^{10}+848 q^8-849 q^6+439 q^4+234 q^2-898+1280 q^{-2} -1218 q^{-4} +713 q^{-6} +58 q^{-8} -812 q^{-10} +1298 q^{-12} -1328 q^{-14} +916 q^{-16} -225 q^{-18} -485 q^{-20} +928 q^{-22} -967 q^{-24} +608 q^{-26} -22 q^{-28} -518 q^{-30} +780 q^{-32} -647 q^{-34} +179 q^{-36} +404 q^{-38} -847 q^{-40} +945 q^{-42} -667 q^{-44} +124 q^{-46} +452 q^{-48} -845 q^{-50} +935 q^{-52} -705 q^{-54} +288 q^{-56} +144 q^{-58} -455 q^{-60} +556 q^{-62} -473 q^{-64} +285 q^{-66} -69 q^{-68} -91 q^{-70} +170 q^{-72} -173 q^{-74} +127 q^{-76} -66 q^{-78} +18 q^{-80} +13 q^{-82} -25 q^{-84} +22 q^{-86} -16 q^{-88} +8 q^{-90} -3 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a160"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 145, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+9 q^4-15 q^3+20 q^2-23 q+24-20 q^{-1} +15 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +10 z^4-3 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} +9 z^2-a^2-3 a^{-2} + a^{-4} +4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+7 a z^9+13 z^9 a^{-1} +6 z^9 a^{-3} +10 a^2 z^8+15 z^8 a^{-2} +7 z^8 a^{-4} +18 z^8+8 a^3 z^7-a z^7-17 z^7 a^{-1} -4 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-16 a^2 z^6-47 z^6 a^{-2} -15 z^6 a^{-4} +z^6 a^{-6} -51 z^6+a^5 z^5-12 a^3 z^5-17 a z^5-11 z^5 a^{-1} -16 z^5 a^{-3} -9 z^5 a^{-5} -5 a^4 z^4+12 a^2 z^4+44 z^4 a^{-2} +9 z^4 a^{-4} -2 z^4 a^{-6} +50 z^4-a^5 z^3+6 a^3 z^3+19 a z^3+24 z^3 a^{-1} +18 z^3 a^{-3} +6 z^3 a^{-5} +a^4 z^2-6 a^2 z^2-18 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -20 z^2-2 a^3 z-6 a z-8 z a^{-1} -6 z a^{-3} -2 z a^{-5} +a^2+3 a^{-2} + a^{-4} +4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a76, K11a289,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a76, K11a289,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a160"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+17 t^2-30 t+37-30 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-4 q^5+9 q^4-15 q^3+20 q^2-23 q+24-20 q^{-1} +15 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a76, K11a289,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a76, K11a289,} |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



