Naming and Enumeration: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 6: Line 6:


<!--$$?Knot$$-->
<!--$$?Knot$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=1|s=Knot}}
{| width=70% border=1 align=center
Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.
|
{{Help2}}
<font color=blue><tt>In[2]:=</tt></font><font color=red><code> ?Knot</code></font>

<tt>Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.</tt>
|}
<!--END-->
<!--END-->


<!--$$?Link$$-->
<!--$$?Link$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=2|s=Link}}
{| width=70% border=1 align=center
Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.
|
{{Help2}}
<font color=blue><tt>In[3]:=</tt></font><font color=red><code> ?Link</code></font>

<tt>Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.</tt>
|}
<!--END-->
<!--END-->


Line 28: Line 22:


<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=3}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[Knot[6, 1]][t]</nowiki></pre>
|<tt><font color=blue>In[4]:=</font></tt>
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 2
|<code><font color=red> Alexander[Knot[6, 1]][t]</font></code>
|- valign=top
|<tt><font color=blue>Out[4]=</font></tt>
|<pre style="border: 0px; padding: 0em"> 2
5 - - - 2 t
5 - - - 2 t
t</pre>
t</nowiki></pre>
{{InOut3}}
|}
<!--END-->
<!--END-->




<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=4}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[Knot[9, 46]][t]</nowiki></pre>
|<tt><font color=blue>In[5]:=</font></tt>
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> 2
|<code><font color=red> Alexander[Knot[9, 46]][t]</font></code>
|- valign=top
|<tt><font color=blue>Out[5]=</font></tt>
|<pre style="border: 0px; padding: 0em"> 2
5 - - - 2 t
5 - - - 2 t
t</pre>
t</nowiki></pre>
{{InOut3}}
|}
<!--END-->
<!--END-->


Line 57: Line 45:


<!--$$Length[Skeleton[Link[6, Alternating, 4]]]$$-->
<!--$$Length[Skeleton[Link[6, Alternating, 4]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=5}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[6, Alternating, 4]]]</nowiki></pre>
|<tt><font color=blue>In[6]:=</font></tt>
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>3</nowiki></pre>
|<code><font color=red> Length[Skeleton[Link[6, Alternating, 4]]]</font></code>
{{InOut3}}
|- valign=top
|<tt><font color=blue>Out[6]=</font></tt>
|<pre style="border: 0px; padding: 0em">3</pre>
|}
<!--END-->
<!--END-->


<!--$$?AllKnots$$-->
<!--$$?AllKnots$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=6|s=AllKnots}}
{| width=70% border=1 align=center
AllKnots[] return a list of all the named knots known to KnotTheory.m.
|
{{Help2}}
<font color=blue><tt>In[7]:=</tt></font><font color=red><code> ?AllKnots</code></font>

<tt>AllKnots[] return a list of all the named knots known to KnotTheory.m.</tt>
|}
<!--END-->
<!--END-->


<!--$$?AllLinks$$-->
<!--$$?AllLinks$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=7|s=AllLinks}}
{| width=70% border=1 align=center
AllLinks[] return a list of all the named links known to KnotTheory.m.
|
{{Help2}}
<font color=blue><tt>In[8]:=</tt></font><font color=red><code> ?AllLinks</code></font>

<tt>AllLinks[] return a list of all the named links known to KnotTheory.m.</tt>
|}
<!--END-->
<!--END-->


Line 90: Line 69:


<!--$$Length /@ {AllKnots[], AllLinks[]}$$-->
<!--$$Length /@ {AllKnots[], AllLinks[]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=8}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length /@ {AllKnots[], AllLinks[]}</nowiki></pre>
|<tt><font color=blue>In[9]:=</font></tt>
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>{802, 1424}</nowiki></pre>
|<code><font color=red> Length /@ {AllKnots[], AllLinks[]}</font></code>
{{InOut3}}
|- valign=top
|<tt><font color=blue>Out[9]=</font></tt>
|<pre style="border: 0px; padding: 0em">{802, 1424}</pre>
|}
<!--END-->
<!--END-->


<!--$$Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]$$-->
<!--$$Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Graphics1|n=9}}
<tt><font color=blue>In[10]:=</font></tt><code><font color=red> DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]</font></code>
Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]

{{Graphics2|n=9|imagename=Naming_and_Enumeration_Out_9.gif}}
<center>[[Image:Naming_and_Enumeration_Out_10.gif]]</center>

<tt><font color=blue>Out[10]=</font> -Graphics-</tt>
<!--END-->
<!--END-->


Line 114: Line 88:


<!--$$?TorusKnot$$-->
<!--$$?TorusKnot$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=10|s=TorusKnot}}
{| width=70% border=1 align=center
TorusKnot[m, n] represents the (m,n) torus knot.
|
{{Help2}}
<font color=blue><tt>In[11]:=</tt></font><font color=red><code> ?TorusKnot</code></font>

<tt>TorusKnot[m, n] represents the (m,n) torus knot.</tt>
|}
<!--END-->
<!--END-->


Line 126: Line 97:


<!--$$Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--$$Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=11}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}</nowiki></pre>
|<tt><font color=blue>In[12]:=</font></tt>
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>{10, 12}</nowiki></pre>
|<code><font color=red> Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}</font></code>
{{InOut3}}
|- valign=top
|<tt><font color=blue>Out[12]=</font></tt>
|<pre style="border: 0px; padding: 0em">{10, 12}</pre>
|}
<!--END-->
<!--END-->


<!--$$Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--$$Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=12}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}</nowiki></pre>
|<tt><font color=blue>In[13]:=</font></tt>
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>{20, 20}</nowiki></pre>
|<code><font color=red> Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}</font></code>
{{InOut3}}
|- valign=top
|<tt><font color=blue>Out[13]=</font></tt>
|<pre style="border: 0px; padding: 0em">{20, 20}</pre>
|}
<!--END-->
<!--END-->



Revision as of 19:41, 27 August 2005


KnotTheory` comes loaded with some knot tables; currently, the Rolfsen table of prime knots with up to 10 crossings [Rolfsen], the Hoste-Thistlethwaite tables of prime knots with up to 16 crossings and the Thistlethwaite table of prime links with up to 11 crossings (see Knotscape):

(For In[1] see Setup)

In[1]:= ?Knot

Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.

In[2]:= ?Link

Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.

Thus, for example, let us verify that the knots 6_1 and 9_46 have the same Alexander polynomial:

In[3]:=
Alexander[Knot[6, 1]][t]
Out[3]=
    2
5 - - - 2 t
    t


In[4]:=
Alexander[Knot[9, 46]][t]
Out[4]=
    2
5 - - - 2 t
    t

We can also check that the Borromean rings, L6a4 in the Thistlethwaite table, is a 3-component link:

In[5]:=
Length[Skeleton[Link[6, Alternating, 4]]]
Out[5]=
3
In[6]:= ?AllKnots

AllKnots[] return a list of all the named knots known to KnotTheory.m.

In[7]:= ?AllLinks

AllLinks[] return a list of all the named links known to KnotTheory.m.

Thus at the moment there are 802 knots and 1424 links known to KnotTheory`:

In[8]:=
Length /@ {AllKnots[], AllLinks[]}
Out[8]=
{802, 1424}
In[9]:=

Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]

Naming and Enumeration Out 9.gif
Out[9]= -Graphics-

(Shumakovitch had noticed that this nice knot has interesting Khovanov homology; see [Shumakovitch]).

In addition to the tables, KnotTheory` also knows about torus knots:

In[10]:= ?TorusKnot

TorusKnot[m, n] represents the (m,n) torus knot.

For example, the torus knots T(5,3) and T(3,5) have different presentations with different numbers of crossings, but they are in fact isotopic, and hence they have the same invariants (and in particular the same type 3 Vassiliev invariant ):

In[11]:=
Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}
Out[11]=
{10, 12}
In[12]:=
Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}
Out[12]=
{20, 20}

KnotTheory` knows how to plot torus knots; see Drawing with TubePlot.

References

[Rolfsen] ^  D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.

[Shumakovitch] ^  A. Shumakovitch, Torsion of the Khovanov Homology, arXiv:math.GT/0405474.