Gauss Codes: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 13: Line 13:


<!--$$?GaussCode$$-->
<!--$$?GaussCode$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=1|s=GaussCode}}
{| width=70% border=1 align=center
GaussCode[i1, i2, ...] represents a knot via its Gauss Code following the conventions used by the knotilus website, http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html. Likewise GaussCode[l1, l2, ...] represents a link, where each of l1, l2,... is a list describing the code read along one component of the link. GaussCode also acts as a "type caster", so for example, GaussCode[K] where K is is a named knot (or link) returns the Gauss code of that knot.
|
{{Help2}}
<font color=blue><tt>In[2]:=</tt></font><font color=red><code> ?GaussCode</code></font>

<tt>GaussCode[i1, i2, ...] represents a knot via its Gauss Code following the conventions used by the knotilus website, http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html. Likewise GaussCode[l1, l2, ...] represents a link, where each of l1, l2,... is a list describing the code read along one component of the link. GaussCode also acts as a "type caster", so for example, GaussCode[K] where K is is a named knot (or link) returns the Gauss code of that knot.</tt>
|}
<!--END-->
<!--END-->


Line 25: Line 22:


<!--$$GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--$$GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=2}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}</nowiki></pre>
|<tt><font color=blue>In[3]:=</font></tt>
{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki>{GaussCode[-1, 3, -2, 1, -3, 2], GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}</nowiki></pre>
|<code><font color=red> GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
{{InOut3}}
|- valign=top
|<tt><font color=blue>Out[3]=</font></tt>
|<pre style="border: 0px; padding: 0em">{GaussCode[-1, 3, -2, 1, -3, 2], GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}</pre>
|}
<!--END-->
<!--END-->


Line 38: Line 32:


<!--$$?KnotilusURL$$-->
<!--$$?KnotilusURL$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=3|s=KnotilusURL}}
{| width=70% border=1 align=center
KnotilusURL[K_] returns the URL of the knot/link K on the knotilus website,
|
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html.
<font color=blue><tt>In[4]:=</tt></font><font color=red><code> ?KnotilusURL</code></font>
{{Help2}}

<tt>KnotilusURL[K_] returns the URL of the knot/link K on the knotilus website,
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html.</tt>
|}
<!--END-->
<!--END-->


Line 51: Line 42:


<!--$$KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--$$KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=4}}
{|
<pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}</nowiki></pre>
|<tt><font color=blue>In[5]:=</font></tt>
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki>{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html,
|<code><font color=red> KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
|- valign=top
|<tt><font color=blue>Out[5]=</font></tt>
|<pre style="border: 0px; padding: 0em">{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html,
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,-2/goTop.html}</pre>
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,-2/goTop.html}</nowiki></pre>
{{InOut3}}
|}
<!--END-->
<!--END-->

Revision as of 19:41, 27 August 2005


The Gauss Code of an -crossing knot or link is obtained as follows:

  • Number the crossings of from 1 to in an arbitrary manner.
  • Order the components of is some arbitrary manner.
  • Start "walking" along the first component of , taking note of the numbers of the crossings you've gone through. If in a given crossing crossing you cross on the "over" strand, write down the number of that crossing. If you cross on the "under" strand, write down the negative of the number of that crossing.
  • Do the same for all other components of (if any).

The resulting list of signed integers (in the case of a knot) or list of lists of signed integers (in the case of a link) is called the Gauss Code of . KnotTheory` has some rudimentary support for Gauss codes:

(For In[1] see Setup)

In[1]:= ?GaussCode

GaussCode[i1, i2, ...] represents a knot via its Gauss Code following the conventions used by the knotilus website, http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html. Likewise GaussCode[l1, l2, ...] represents a link, where each of l1, l2,... is a list describing the code read along one component of the link. GaussCode also acts as a "type caster", so for example, GaussCode[K] where K is is a named knot (or link) returns the Gauss code of that knot.

Thus for example, the Gauss codes for the trefoil knot and the Borromean link are:

In[2]:=
GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}
Out[2]=
{GaussCode[-1, 3, -2, 1, -3, 2], GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}

Ralph Furmaniak, working under the guidance of Stuart Rankin and Ortho Flint at the University of Western Ontario, wrote a web-based server called "Knotilus" that takes Gauss codes and outputs pictures of the desired knots and links in several standard image formats.

In[3]:= ?KnotilusURL

KnotilusURL[K_] returns the URL of the knot/link K on the knotilus website, http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html.

Thus,

In[4]:=
KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}
Out[4]=
{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html, 
 
  http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,-2/goTop.html}