10 56: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 41: | Line 44: | ||
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-q^{50}-7 q^{49}+6 q^{48}+14 q^{47}-15 q^{46}-28 q^{45}+29 q^{44}+53 q^{43}-42 q^{42}-99 q^{41}+55 q^{40}+159 q^{39}-59 q^{38}-227 q^{37}+44 q^{36}+305 q^{35}-23 q^{34}-365 q^{33}-20 q^{32}+419 q^{31}+57 q^{30}-438 q^{29}-108 q^{28}+445 q^{27}+148 q^{26}-422 q^{25}-190 q^{24}+385 q^{23}+222 q^{22}-331 q^{21}-242 q^{20}+258 q^{19}+260 q^{18}-195 q^{17}-244 q^{16}+113 q^{15}+230 q^{14}-59 q^{13}-183 q^{12}+3 q^{11}+146 q^{10}+16 q^9-91 q^8-35 q^7+62 q^6+25 q^5-28 q^4-23 q^3+17 q^2+11 q-5-8 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+2 q^{51}-q^{50}-7 q^{49}+6 q^{48}+14 q^{47}-15 q^{46}-28 q^{45}+29 q^{44}+53 q^{43}-42 q^{42}-99 q^{41}+55 q^{40}+159 q^{39}-59 q^{38}-227 q^{37}+44 q^{36}+305 q^{35}-23 q^{34}-365 q^{33}-20 q^{32}+419 q^{31}+57 q^{30}-438 q^{29}-108 q^{28}+445 q^{27}+148 q^{26}-422 q^{25}-190 q^{24}+385 q^{23}+222 q^{22}-331 q^{21}-242 q^{20}+258 q^{19}+260 q^{18}-195 q^{17}-244 q^{16}+113 q^{15}+230 q^{14}-59 q^{13}-183 q^{12}+3 q^{11}+146 q^{10}+16 q^9-91 q^8-35 q^7+62 q^6+25 q^5-28 q^4-23 q^3+17 q^2+11 q-5-8 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} </math> | |
||
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+2 q^{85}-5 q^{84}+8 q^{83}-10 q^{82}+8 q^{81}+4 q^{80}-26 q^{79}+28 q^{78}-19 q^{77}+36 q^{76}+12 q^{75}-104 q^{74}+33 q^{73}-17 q^{72}+160 q^{71}+78 q^{70}-287 q^{69}-90 q^{68}-83 q^{67}+462 q^{66}+377 q^{65}-494 q^{64}-461 q^{63}-416 q^{62}+852 q^{61}+1018 q^{60}-485 q^{59}-954 q^{58}-1114 q^{57}+1046 q^{56}+1813 q^{55}-132 q^{54}-1264 q^{53}-1944 q^{52}+897 q^{51}+2385 q^{50}+393 q^{49}-1216 q^{48}-2554 q^{47}+520 q^{46}+2537 q^{45}+841 q^{44}-888 q^{43}-2784 q^{42}+83 q^{41}+2309 q^{40}+1132 q^{39}-404 q^{38}-2678 q^{37}-358 q^{36}+1807 q^{35}+1276 q^{34}+163 q^{33}-2275 q^{32}-756 q^{31}+1089 q^{30}+1224 q^{29}+713 q^{28}-1600 q^{27}-956 q^{26}+312 q^{25}+892 q^{24}+1019 q^{23}-796 q^{22}-805 q^{21}-244 q^{20}+375 q^{19}+921 q^{18}-170 q^{17}-410 q^{16}-386 q^{15}-31 q^{14}+550 q^{13}+81 q^{12}-74 q^{11}-241 q^{10}-153 q^9+216 q^8+69 q^7+45 q^6-80 q^5-100 q^4+60 q^3+15 q^2+35 q-14-37 q^{-1} +17 q^{-2} -2 q^{-3} +11 q^{-4} - q^{-5} -10 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+2 q^{85}-5 q^{84}+8 q^{83}-10 q^{82}+8 q^{81}+4 q^{80}-26 q^{79}+28 q^{78}-19 q^{77}+36 q^{76}+12 q^{75}-104 q^{74}+33 q^{73}-17 q^{72}+160 q^{71}+78 q^{70}-287 q^{69}-90 q^{68}-83 q^{67}+462 q^{66}+377 q^{65}-494 q^{64}-461 q^{63}-416 q^{62}+852 q^{61}+1018 q^{60}-485 q^{59}-954 q^{58}-1114 q^{57}+1046 q^{56}+1813 q^{55}-132 q^{54}-1264 q^{53}-1944 q^{52}+897 q^{51}+2385 q^{50}+393 q^{49}-1216 q^{48}-2554 q^{47}+520 q^{46}+2537 q^{45}+841 q^{44}-888 q^{43}-2784 q^{42}+83 q^{41}+2309 q^{40}+1132 q^{39}-404 q^{38}-2678 q^{37}-358 q^{36}+1807 q^{35}+1276 q^{34}+163 q^{33}-2275 q^{32}-756 q^{31}+1089 q^{30}+1224 q^{29}+713 q^{28}-1600 q^{27}-956 q^{26}+312 q^{25}+892 q^{24}+1019 q^{23}-796 q^{22}-805 q^{21}-244 q^{20}+375 q^{19}+921 q^{18}-170 q^{17}-410 q^{16}-386 q^{15}-31 q^{14}+550 q^{13}+81 q^{12}-74 q^{11}-241 q^{10}-153 q^9+216 q^8+69 q^7+45 q^6-80 q^5-100 q^4+60 q^3+15 q^2+35 q-14-37 q^{-1} +17 q^{-2} -2 q^{-3} +11 q^{-4} - q^{-5} -10 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 50: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 56]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 56]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13], |
||
Line 70: | Line 73: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 56]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_56_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 56]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_56_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 56]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 56]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 56]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 56]][t]</nowiki></pre></td></tr> |
Revision as of 18:39, 31 August 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 56's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7 |
Dowker-Thistlethwaite code | 4 10 12 16 2 8 18 20 6 14 |
Conway Notation | [221,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{3, 12}, {2, 5}, {1, 3}, {9, 4}, {10, 8}, {7, 9}, {8, 2}, {6, 11}, {5, 7}, {4, 6}, {12, 10}, {11, 1}] |
[edit Notes on presentations of 10 56]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_25, K11a140,}
Same Jones Polynomial (up to mirroring, ): {10_25,}
Vassiliev invariants
V2 and V3: | (0, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 56. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|