|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} + q^{-9} +3 q^{-10} -6 q^{-11} + q^{-12} +4 q^{-13} +2 q^{-14} -9 q^{-15} +10 q^{-16} +5 q^{-17} -16 q^{-18} -20 q^{-19} +51 q^{-20} +23 q^{-21} -73 q^{-22} -61 q^{-23} +118 q^{-24} +92 q^{-25} -140 q^{-26} -153 q^{-27} +169 q^{-28} +193 q^{-29} -160 q^{-30} -250 q^{-31} +156 q^{-32} +277 q^{-33} -125 q^{-34} -298 q^{-35} +90 q^{-36} +302 q^{-37} -50 q^{-38} -289 q^{-39} +275 q^{-41} +38 q^{-42} -236 q^{-43} -85 q^{-44} +201 q^{-45} +110 q^{-46} -145 q^{-47} -134 q^{-48} +100 q^{-49} +126 q^{-50} -46 q^{-51} -114 q^{-52} +11 q^{-53} +86 q^{-54} +12 q^{-55} -56 q^{-56} -20 q^{-57} +30 q^{-58} +19 q^{-59} -14 q^{-60} -12 q^{-61} +5 q^{-62} +5 q^{-63} -3 q^{-65} + q^{-66} </math> | |
|
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} + q^{-9} +3 q^{-10} -6 q^{-11} + q^{-12} +4 q^{-13} +2 q^{-14} -9 q^{-15} +10 q^{-16} +5 q^{-17} -16 q^{-18} -20 q^{-19} +51 q^{-20} +23 q^{-21} -73 q^{-22} -61 q^{-23} +118 q^{-24} +92 q^{-25} -140 q^{-26} -153 q^{-27} +169 q^{-28} +193 q^{-29} -160 q^{-30} -250 q^{-31} +156 q^{-32} +277 q^{-33} -125 q^{-34} -298 q^{-35} +90 q^{-36} +302 q^{-37} -50 q^{-38} -289 q^{-39} +275 q^{-41} +38 q^{-42} -236 q^{-43} -85 q^{-44} +201 q^{-45} +110 q^{-46} -145 q^{-47} -134 q^{-48} +100 q^{-49} +126 q^{-50} -46 q^{-51} -114 q^{-52} +11 q^{-53} +86 q^{-54} +12 q^{-55} -56 q^{-56} -20 q^{-57} +30 q^{-58} +19 q^{-59} -14 q^{-60} -12 q^{-61} +5 q^{-62} +5 q^{-63} -3 q^{-65} + q^{-66} </math> | |
|
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} + q^{-11} - q^{-12} +6 q^{-13} -10 q^{-14} +2 q^{-15} +3 q^{-16} -4 q^{-17} +25 q^{-18} -24 q^{-19} -8 q^{-21} -21 q^{-22} +76 q^{-23} -16 q^{-24} +6 q^{-25} -66 q^{-26} -107 q^{-27} +159 q^{-28} +78 q^{-29} +98 q^{-30} -180 q^{-31} -377 q^{-32} +177 q^{-33} +296 q^{-34} +421 q^{-35} -237 q^{-36} -867 q^{-37} -42 q^{-38} +492 q^{-39} +1001 q^{-40} -43 q^{-41} -1379 q^{-42} -514 q^{-43} +446 q^{-44} +1590 q^{-45} +399 q^{-46} -1626 q^{-47} -985 q^{-48} +130 q^{-49} +1891 q^{-50} +862 q^{-51} -1537 q^{-52} -1221 q^{-53} -269 q^{-54} +1845 q^{-55} +1149 q^{-56} -1230 q^{-57} -1198 q^{-58} -618 q^{-59} +1555 q^{-60} +1259 q^{-61} -802 q^{-62} -1005 q^{-63} -905 q^{-64} +1100 q^{-65} +1225 q^{-66} -295 q^{-67} -667 q^{-68} -1093 q^{-69} +527 q^{-70} +1009 q^{-71} +168 q^{-72} -201 q^{-73} -1045 q^{-74} -16 q^{-75} +583 q^{-76} +390 q^{-77} +248 q^{-78} -715 q^{-79} -301 q^{-80} +116 q^{-81} +291 q^{-82} +445 q^{-83} -283 q^{-84} -255 q^{-85} -144 q^{-86} +57 q^{-87} +346 q^{-88} -17 q^{-89} -77 q^{-90} -142 q^{-91} -69 q^{-92} +149 q^{-93} +35 q^{-94} +19 q^{-95} -53 q^{-96} -58 q^{-97} +36 q^{-98} +11 q^{-99} +20 q^{-100} -7 q^{-101} -19 q^{-102} +5 q^{-103} +5 q^{-105} -3 q^{-107} + q^{-108} </math> | |
|
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} + q^{-11} - q^{-12} +6 q^{-13} -10 q^{-14} +2 q^{-15} +3 q^{-16} -4 q^{-17} +25 q^{-18} -24 q^{-19} -8 q^{-21} -21 q^{-22} +76 q^{-23} -16 q^{-24} +6 q^{-25} -66 q^{-26} -107 q^{-27} +159 q^{-28} +78 q^{-29} +98 q^{-30} -180 q^{-31} -377 q^{-32} +177 q^{-33} +296 q^{-34} +421 q^{-35} -237 q^{-36} -867 q^{-37} -42 q^{-38} +492 q^{-39} +1001 q^{-40} -43 q^{-41} -1379 q^{-42} -514 q^{-43} +446 q^{-44} +1590 q^{-45} +399 q^{-46} -1626 q^{-47} -985 q^{-48} +130 q^{-49} +1891 q^{-50} +862 q^{-51} -1537 q^{-52} -1221 q^{-53} -269 q^{-54} +1845 q^{-55} +1149 q^{-56} -1230 q^{-57} -1198 q^{-58} -618 q^{-59} +1555 q^{-60} +1259 q^{-61} -802 q^{-62} -1005 q^{-63} -905 q^{-64} +1100 q^{-65} +1225 q^{-66} -295 q^{-67} -667 q^{-68} -1093 q^{-69} +527 q^{-70} +1009 q^{-71} +168 q^{-72} -201 q^{-73} -1045 q^{-74} -16 q^{-75} +583 q^{-76} +390 q^{-77} +248 q^{-78} -715 q^{-79} -301 q^{-80} +116 q^{-81} +291 q^{-82} +445 q^{-83} -283 q^{-84} -255 q^{-85} -144 q^{-86} +57 q^{-87} +346 q^{-88} -17 q^{-89} -77 q^{-90} -142 q^{-91} -69 q^{-92} +149 q^{-93} +35 q^{-94} +19 q^{-95} -53 q^{-96} -58 q^{-97} +36 q^{-98} +11 q^{-99} +20 q^{-100} -7 q^{-101} -19 q^{-102} +5 q^{-103} +5 q^{-105} -3 q^{-107} + q^{-108} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 55]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 55]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[15, 18, 16, 19], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[15, 18, 16, 19], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 55]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_55_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 55]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_55_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 55]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 55]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 55]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 55]][t]</nowiki></pre></td></tr> |