|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math>q^9-3 q^8+2 q^7+3 q^6-q^5-10 q^4+5 q^3+18 q^2-9 q-32+18 q^{-1} +50 q^{-2} -26 q^{-3} -83 q^{-4} +45 q^{-5} +118 q^{-6} -53 q^{-7} -177 q^{-8} +73 q^{-9} +229 q^{-10} -67 q^{-11} -301 q^{-12} +69 q^{-13} +346 q^{-14} -36 q^{-15} -401 q^{-16} +17 q^{-17} +413 q^{-18} +30 q^{-19} -420 q^{-20} -67 q^{-21} +398 q^{-22} +108 q^{-23} -364 q^{-24} -144 q^{-25} +317 q^{-26} +170 q^{-27} -258 q^{-28} -191 q^{-29} +201 q^{-30} +192 q^{-31} -135 q^{-32} -187 q^{-33} +84 q^{-34} +159 q^{-35} -32 q^{-36} -131 q^{-37} +2 q^{-38} +92 q^{-39} +17 q^{-40} -58 q^{-41} -22 q^{-42} +31 q^{-43} +19 q^{-44} -14 q^{-45} -12 q^{-46} +5 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} </math> | |
|
coloured_jones_3 = <math>q^9-3 q^8+2 q^7+3 q^6-q^5-10 q^4+5 q^3+18 q^2-9 q-32+18 q^{-1} +50 q^{-2} -26 q^{-3} -83 q^{-4} +45 q^{-5} +118 q^{-6} -53 q^{-7} -177 q^{-8} +73 q^{-9} +229 q^{-10} -67 q^{-11} -301 q^{-12} +69 q^{-13} +346 q^{-14} -36 q^{-15} -401 q^{-16} +17 q^{-17} +413 q^{-18} +30 q^{-19} -420 q^{-20} -67 q^{-21} +398 q^{-22} +108 q^{-23} -364 q^{-24} -144 q^{-25} +317 q^{-26} +170 q^{-27} -258 q^{-28} -191 q^{-29} +201 q^{-30} +192 q^{-31} -135 q^{-32} -187 q^{-33} +84 q^{-34} +159 q^{-35} -32 q^{-36} -131 q^{-37} +2 q^{-38} +92 q^{-39} +17 q^{-40} -58 q^{-41} -22 q^{-42} +31 q^{-43} +19 q^{-44} -14 q^{-45} -12 q^{-46} +5 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} </math> | |
|
coloured_jones_4 = <math>q^{16}-3 q^{15}+2 q^{14}+3 q^{13}-5 q^{12}+5 q^{11}-12 q^{10}+11 q^9+12 q^8-24 q^7+18 q^6-34 q^5+35 q^4+33 q^3-75 q^2+37 q-63+104 q^{-1} +71 q^{-2} -198 q^{-3} +28 q^{-4} -90 q^{-5} +282 q^{-6} +175 q^{-7} -429 q^{-8} -110 q^{-9} -155 q^{-10} +631 q^{-11} +452 q^{-12} -711 q^{-13} -451 q^{-14} -382 q^{-15} +1072 q^{-16} +958 q^{-17} -865 q^{-18} -891 q^{-19} -831 q^{-20} +1377 q^{-21} +1542 q^{-22} -757 q^{-23} -1180 q^{-24} -1371 q^{-25} +1379 q^{-26} +1946 q^{-27} -448 q^{-28} -1173 q^{-29} -1774 q^{-30} +1110 q^{-31} +2023 q^{-32} -79 q^{-33} -906 q^{-34} -1945 q^{-35} +691 q^{-36} +1824 q^{-37} +269 q^{-38} -499 q^{-39} -1904 q^{-40} +214 q^{-41} +1431 q^{-42} +554 q^{-43} -27 q^{-44} -1669 q^{-45} -238 q^{-46} +902 q^{-47} +686 q^{-48} +414 q^{-49} -1228 q^{-50} -520 q^{-51} +330 q^{-52} +579 q^{-53} +672 q^{-54} -669 q^{-55} -516 q^{-56} -94 q^{-57} +286 q^{-58} +636 q^{-59} -201 q^{-60} -294 q^{-61} -236 q^{-62} +16 q^{-63} +394 q^{-64} +17 q^{-65} -70 q^{-66} -161 q^{-67} -85 q^{-68} +155 q^{-69} +40 q^{-70} +22 q^{-71} -55 q^{-72} -60 q^{-73} +37 q^{-74} +11 q^{-75} +20 q^{-76} -7 q^{-77} -19 q^{-78} +5 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} </math> | |
|
coloured_jones_4 = <math>q^{16}-3 q^{15}+2 q^{14}+3 q^{13}-5 q^{12}+5 q^{11}-12 q^{10}+11 q^9+12 q^8-24 q^7+18 q^6-34 q^5+35 q^4+33 q^3-75 q^2+37 q-63+104 q^{-1} +71 q^{-2} -198 q^{-3} +28 q^{-4} -90 q^{-5} +282 q^{-6} +175 q^{-7} -429 q^{-8} -110 q^{-9} -155 q^{-10} +631 q^{-11} +452 q^{-12} -711 q^{-13} -451 q^{-14} -382 q^{-15} +1072 q^{-16} +958 q^{-17} -865 q^{-18} -891 q^{-19} -831 q^{-20} +1377 q^{-21} +1542 q^{-22} -757 q^{-23} -1180 q^{-24} -1371 q^{-25} +1379 q^{-26} +1946 q^{-27} -448 q^{-28} -1173 q^{-29} -1774 q^{-30} +1110 q^{-31} +2023 q^{-32} -79 q^{-33} -906 q^{-34} -1945 q^{-35} +691 q^{-36} +1824 q^{-37} +269 q^{-38} -499 q^{-39} -1904 q^{-40} +214 q^{-41} +1431 q^{-42} +554 q^{-43} -27 q^{-44} -1669 q^{-45} -238 q^{-46} +902 q^{-47} +686 q^{-48} +414 q^{-49} -1228 q^{-50} -520 q^{-51} +330 q^{-52} +579 q^{-53} +672 q^{-54} -669 q^{-55} -516 q^{-56} -94 q^{-57} +286 q^{-58} +636 q^{-59} -201 q^{-60} -294 q^{-61} -236 q^{-62} +16 q^{-63} +394 q^{-64} +17 q^{-65} -70 q^{-66} -161 q^{-67} -85 q^{-68} +155 q^{-69} +40 q^{-70} +22 q^{-71} -55 q^{-72} -60 q^{-73} +37 q^{-74} +11 q^{-75} +20 q^{-76} -7 q^{-77} -19 q^{-78} +5 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 30]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 30]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 30]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_30_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 30]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_30_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 30]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 30]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 30]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 30]][t]</nowiki></pre></td></tr> |