9 5: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 41: Line 44:
coloured_jones_3 = <math>-q^{57}+q^{56}+q^{55}-3 q^{53}+3 q^{51}+3 q^{50}-5 q^{49}-3 q^{48}+3 q^{47}+7 q^{46}-4 q^{45}-6 q^{44}+q^{43}+8 q^{42}-q^{41}-7 q^{40}-q^{39}+7 q^{38}+q^{37}-6 q^{36}-q^{35}+5 q^{34}+2 q^{33}-6 q^{32}+2 q^{30}+q^{29}-4 q^{28}+3 q^{27}-2 q^{26}+5 q^{23}-4 q^{22}-2 q^{21}+6 q^{19}-2 q^{18}-2 q^{17}-2 q^{16}+3 q^{15}+2 q^{14}-q^{13}-3 q^{12}+q^{11}+3 q^{10}-3 q^8+q^7+q^6+q^5-2 q^4+q^3</math> |
coloured_jones_3 = <math>-q^{57}+q^{56}+q^{55}-3 q^{53}+3 q^{51}+3 q^{50}-5 q^{49}-3 q^{48}+3 q^{47}+7 q^{46}-4 q^{45}-6 q^{44}+q^{43}+8 q^{42}-q^{41}-7 q^{40}-q^{39}+7 q^{38}+q^{37}-6 q^{36}-q^{35}+5 q^{34}+2 q^{33}-6 q^{32}+2 q^{30}+q^{29}-4 q^{28}+3 q^{27}-2 q^{26}+5 q^{23}-4 q^{22}-2 q^{21}+6 q^{19}-2 q^{18}-2 q^{17}-2 q^{16}+3 q^{15}+2 q^{14}-q^{13}-3 q^{12}+q^{11}+3 q^{10}-3 q^8+q^7+q^6+q^5-2 q^4+q^3</math> |
coloured_jones_4 = <math>q^{94}-q^{93}-q^{92}+4 q^{89}-q^{88}-2 q^{87}-2 q^{86}-4 q^{85}+8 q^{84}+2 q^{83}-3 q^{81}-11 q^{80}+8 q^{79}+3 q^{78}+5 q^{77}+q^{76}-16 q^{75}+6 q^{74}-q^{73}+7 q^{72}+7 q^{71}-16 q^{70}+8 q^{69}-7 q^{68}+4 q^{67}+9 q^{66}-16 q^{65}+14 q^{64}-8 q^{63}+8 q^{61}-19 q^{60}+20 q^{59}-4 q^{58}+5 q^{56}-26 q^{55}+22 q^{54}+2 q^{53}+2 q^{52}+2 q^{51}-33 q^{50}+23 q^{49}+7 q^{48}+4 q^{47}-q^{46}-39 q^{45}+25 q^{44}+14 q^{43}+5 q^{42}-6 q^{41}-44 q^{40}+25 q^{39}+22 q^{38}+9 q^{37}-8 q^{36}-49 q^{35}+20 q^{34}+25 q^{33}+14 q^{32}-6 q^{31}-46 q^{30}+12 q^{29}+18 q^{28}+15 q^{27}+q^{26}-36 q^{25}+8 q^{24}+9 q^{23}+10 q^{22}+5 q^{21}-24 q^{20}+7 q^{19}+2 q^{18}+5 q^{17}+5 q^{16}-14 q^{15}+6 q^{14}-q^{13}+2 q^{12}+3 q^{11}-6 q^{10}+3 q^9-q^8+q^7+q^6-2 q^5+q^4</math> |
coloured_jones_4 = <math>q^{94}-q^{93}-q^{92}+4 q^{89}-q^{88}-2 q^{87}-2 q^{86}-4 q^{85}+8 q^{84}+2 q^{83}-3 q^{81}-11 q^{80}+8 q^{79}+3 q^{78}+5 q^{77}+q^{76}-16 q^{75}+6 q^{74}-q^{73}+7 q^{72}+7 q^{71}-16 q^{70}+8 q^{69}-7 q^{68}+4 q^{67}+9 q^{66}-16 q^{65}+14 q^{64}-8 q^{63}+8 q^{61}-19 q^{60}+20 q^{59}-4 q^{58}+5 q^{56}-26 q^{55}+22 q^{54}+2 q^{53}+2 q^{52}+2 q^{51}-33 q^{50}+23 q^{49}+7 q^{48}+4 q^{47}-q^{46}-39 q^{45}+25 q^{44}+14 q^{43}+5 q^{42}-6 q^{41}-44 q^{40}+25 q^{39}+22 q^{38}+9 q^{37}-8 q^{36}-49 q^{35}+20 q^{34}+25 q^{33}+14 q^{32}-6 q^{31}-46 q^{30}+12 q^{29}+18 q^{28}+15 q^{27}+q^{26}-36 q^{25}+8 q^{24}+9 q^{23}+10 q^{22}+5 q^{21}-24 q^{20}+7 q^{19}+2 q^{18}+5 q^{17}+5 q^{16}-14 q^{15}+6 q^{14}-q^{13}+2 q^{12}+3 q^{11}-6 q^{10}+3 q^9-q^8+q^7+q^6-2 q^5+q^4</math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 50: Line 53:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[18, 8, 1, 7], X[16, 10, 17, 9],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[18, 8, 1, 7], X[16, 10, 17, 9],
Line 68: Line 71:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 5]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_5_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 5]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_5_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 5]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 5]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 5]][t]</nowiki></pre></td></tr>

Revision as of 17:45, 31 August 2005

9 4.gif

9_4

9 6.gif

9_6

9 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 5 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X18,8,1,7 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2,14,3,13 X12,4,13,3 X4,12,5,11
Gauss code 1, -7, 8, -9, 2, -1, 3, -6, 4, -5, 9, -8, 7, -2, 5, -4, 6, -3
Dowker-Thistlethwaite code 6 12 14 18 16 4 2 10 8
Conway Notation [513]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5,

Braid index is 5

9 5 ML.gif 9 5 AP.gif
[{3, 5}, {6, 4}, {5, 7}, {8, 6}, {7, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}]

[edit Notes on presentations of 9 5]

Knot 9_5.
A graph, knot 9_5.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 5.69844
A-Polynomial See Data:9 5/A-polynomial

[edit Notes for 9 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, 15)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
21         1-1
19          0
17       21 -1
15      1   1
13     22   0
11    21    1
9   12     1
7  22      0
5  1       1
312        -1
11         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials