|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math>-q^{30}+2 q^{29}-q^{27}-3 q^{26}+5 q^{25}+q^{24}-5 q^{23}-4 q^{22}+13 q^{21}+q^{20}-19 q^{19}-6 q^{18}+36 q^{17}+10 q^{16}-55 q^{15}-24 q^{14}+76 q^{13}+52 q^{12}-103 q^{11}-79 q^{10}+113 q^9+128 q^8-132 q^7-160 q^6+124 q^5+208 q^4-129 q^3-227 q^2+105 q+258-97 q^{-1} -256 q^{-2} +67 q^{-3} +256 q^{-4} -42 q^{-5} -238 q^{-6} +12 q^{-7} +212 q^{-8} +16 q^{-9} -177 q^{-10} -39 q^{-11} +138 q^{-12} +53 q^{-13} -98 q^{-14} -59 q^{-15} +64 q^{-16} +53 q^{-17} -36 q^{-18} -42 q^{-19} +17 q^{-20} +30 q^{-21} -7 q^{-22} -19 q^{-23} +3 q^{-24} +10 q^{-25} - q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math> | |
|
coloured_jones_3 = <math>-q^{30}+2 q^{29}-q^{27}-3 q^{26}+5 q^{25}+q^{24}-5 q^{23}-4 q^{22}+13 q^{21}+q^{20}-19 q^{19}-6 q^{18}+36 q^{17}+10 q^{16}-55 q^{15}-24 q^{14}+76 q^{13}+52 q^{12}-103 q^{11}-79 q^{10}+113 q^9+128 q^8-132 q^7-160 q^6+124 q^5+208 q^4-129 q^3-227 q^2+105 q+258-97 q^{-1} -256 q^{-2} +67 q^{-3} +256 q^{-4} -42 q^{-5} -238 q^{-6} +12 q^{-7} +212 q^{-8} +16 q^{-9} -177 q^{-10} -39 q^{-11} +138 q^{-12} +53 q^{-13} -98 q^{-14} -59 q^{-15} +64 q^{-16} +53 q^{-17} -36 q^{-18} -42 q^{-19} +17 q^{-20} +30 q^{-21} -7 q^{-22} -19 q^{-23} +3 q^{-24} +10 q^{-25} - q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math> | |
|
coloured_jones_4 = <math>q^{50}-2 q^{49}+q^{47}-q^{46}+6 q^{45}-7 q^{44}+q^{43}+2 q^{42}-9 q^{41}+17 q^{40}-14 q^{39}+10 q^{38}+9 q^{37}-34 q^{36}+23 q^{35}-30 q^{34}+41 q^{33}+44 q^{32}-70 q^{31}+6 q^{30}-95 q^{29}+84 q^{28}+146 q^{27}-64 q^{26}-21 q^{25}-267 q^{24}+65 q^{23}+301 q^{22}+63 q^{21}+39 q^{20}-536 q^{19}-113 q^{18}+403 q^{17}+306 q^{16}+274 q^{15}-781 q^{14}-427 q^{13}+349 q^{12}+542 q^{11}+640 q^{10}-892 q^9-735 q^8+170 q^7+664 q^6+987 q^5-867 q^4-923 q^3-36 q^2+660 q+1213-751 q^{-1} -969 q^{-2} -215 q^{-3} +552 q^{-4} +1288 q^{-5} -548 q^{-6} -875 q^{-7} -371 q^{-8} +343 q^{-9} +1215 q^{-10} -275 q^{-11} -645 q^{-12} -466 q^{-13} +63 q^{-14} +980 q^{-15} -17 q^{-16} -316 q^{-17} -438 q^{-18} -187 q^{-19} +632 q^{-20} +111 q^{-21} -18 q^{-22} -281 q^{-23} -283 q^{-24} +296 q^{-25} +87 q^{-26} +123 q^{-27} -102 q^{-28} -220 q^{-29} +96 q^{-30} +12 q^{-31} +110 q^{-32} -5 q^{-33} -111 q^{-34} +28 q^{-35} -18 q^{-36} +52 q^{-37} +10 q^{-38} -42 q^{-39} +13 q^{-40} -12 q^{-41} +16 q^{-42} +5 q^{-43} -13 q^{-44} +4 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math> | |
|
coloured_jones_4 = <math>q^{50}-2 q^{49}+q^{47}-q^{46}+6 q^{45}-7 q^{44}+q^{43}+2 q^{42}-9 q^{41}+17 q^{40}-14 q^{39}+10 q^{38}+9 q^{37}-34 q^{36}+23 q^{35}-30 q^{34}+41 q^{33}+44 q^{32}-70 q^{31}+6 q^{30}-95 q^{29}+84 q^{28}+146 q^{27}-64 q^{26}-21 q^{25}-267 q^{24}+65 q^{23}+301 q^{22}+63 q^{21}+39 q^{20}-536 q^{19}-113 q^{18}+403 q^{17}+306 q^{16}+274 q^{15}-781 q^{14}-427 q^{13}+349 q^{12}+542 q^{11}+640 q^{10}-892 q^9-735 q^8+170 q^7+664 q^6+987 q^5-867 q^4-923 q^3-36 q^2+660 q+1213-751 q^{-1} -969 q^{-2} -215 q^{-3} +552 q^{-4} +1288 q^{-5} -548 q^{-6} -875 q^{-7} -371 q^{-8} +343 q^{-9} +1215 q^{-10} -275 q^{-11} -645 q^{-12} -466 q^{-13} +63 q^{-14} +980 q^{-15} -17 q^{-16} -316 q^{-17} -438 q^{-18} -187 q^{-19} +632 q^{-20} +111 q^{-21} -18 q^{-22} -281 q^{-23} -283 q^{-24} +296 q^{-25} +87 q^{-26} +123 q^{-27} -102 q^{-28} -220 q^{-29} +96 q^{-30} +12 q^{-31} +110 q^{-32} -5 q^{-33} -111 q^{-34} +28 q^{-35} -18 q^{-36} +52 q^{-37} +10 q^{-38} -42 q^{-39} +13 q^{-40} -12 q^{-41} +16 q^{-42} +5 q^{-43} -13 q^{-44} +4 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 31]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 31]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[9, 14, 10, 15], X[13, 10, 14, 11], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[9, 14, 10, 15], X[13, 10, 14, 11], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 31]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_31_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 31]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_31_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 31]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 31]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 31]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 31]][t]</nowiki></pre></td></tr> |