|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 39: |
Line 42: |
|
coloured_jones_3 = <math>2 q^{-1} -2 q^{-2} + q^{-3} -2 q^{-4} +7 q^{-5} -5 q^{-6} -6 q^{-7} +3 q^{-8} +18 q^{-9} -10 q^{-10} -25 q^{-11} +6 q^{-12} +43 q^{-13} -9 q^{-14} -50 q^{-15} - q^{-16} +63 q^{-17} +4 q^{-18} -63 q^{-19} -15 q^{-20} +63 q^{-21} +22 q^{-22} -57 q^{-23} -27 q^{-24} +46 q^{-25} +35 q^{-26} -38 q^{-27} -37 q^{-28} +24 q^{-29} +43 q^{-30} -16 q^{-31} -40 q^{-32} + q^{-33} +41 q^{-34} +6 q^{-35} -33 q^{-36} -15 q^{-37} +25 q^{-38} +19 q^{-39} -15 q^{-40} -18 q^{-41} +5 q^{-42} +15 q^{-43} -9 q^{-45} -3 q^{-46} +5 q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} </math> | |
|
coloured_jones_3 = <math>2 q^{-1} -2 q^{-2} + q^{-3} -2 q^{-4} +7 q^{-5} -5 q^{-6} -6 q^{-7} +3 q^{-8} +18 q^{-9} -10 q^{-10} -25 q^{-11} +6 q^{-12} +43 q^{-13} -9 q^{-14} -50 q^{-15} - q^{-16} +63 q^{-17} +4 q^{-18} -63 q^{-19} -15 q^{-20} +63 q^{-21} +22 q^{-22} -57 q^{-23} -27 q^{-24} +46 q^{-25} +35 q^{-26} -38 q^{-27} -37 q^{-28} +24 q^{-29} +43 q^{-30} -16 q^{-31} -40 q^{-32} + q^{-33} +41 q^{-34} +6 q^{-35} -33 q^{-36} -15 q^{-37} +25 q^{-38} +19 q^{-39} -15 q^{-40} -18 q^{-41} +5 q^{-42} +15 q^{-43} -9 q^{-45} -3 q^{-46} +5 q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} </math> | |
|
coloured_jones_4 = <math>1+ q^{-1} -2 q^{-2} - q^{-3} +4 q^{-4} -2 q^{-5} +2 q^{-6} -7 q^{-7} -4 q^{-8} +22 q^{-9} -5 q^{-11} -37 q^{-12} -17 q^{-13} +73 q^{-14} +34 q^{-15} -11 q^{-16} -108 q^{-17} -72 q^{-18} +132 q^{-19} +115 q^{-20} +21 q^{-21} -184 q^{-22} -170 q^{-23} +150 q^{-24} +192 q^{-25} +92 q^{-26} -207 q^{-27} -256 q^{-28} +119 q^{-29} +211 q^{-30} +154 q^{-31} -174 q^{-32} -282 q^{-33} +76 q^{-34} +172 q^{-35} +181 q^{-36} -117 q^{-37} -262 q^{-38} +39 q^{-39} +112 q^{-40} +186 q^{-41} -57 q^{-42} -222 q^{-43} + q^{-44} +44 q^{-45} +180 q^{-46} +12 q^{-47} -168 q^{-48} -38 q^{-49} -29 q^{-50} +151 q^{-51} +74 q^{-52} -89 q^{-53} -50 q^{-54} -94 q^{-55} +85 q^{-56} +95 q^{-57} -5 q^{-58} -17 q^{-59} -112 q^{-60} +8 q^{-61} +58 q^{-62} +36 q^{-63} +32 q^{-64} -73 q^{-65} -27 q^{-66} +5 q^{-67} +21 q^{-68} +46 q^{-69} -21 q^{-70} -16 q^{-71} -15 q^{-72} -3 q^{-73} +25 q^{-74} -7 q^{-77} -7 q^{-78} +6 q^{-79} + q^{-80} +2 q^{-81} - q^{-82} -2 q^{-83} + q^{-84} </math> | |
|
coloured_jones_4 = <math>1+ q^{-1} -2 q^{-2} - q^{-3} +4 q^{-4} -2 q^{-5} +2 q^{-6} -7 q^{-7} -4 q^{-8} +22 q^{-9} -5 q^{-11} -37 q^{-12} -17 q^{-13} +73 q^{-14} +34 q^{-15} -11 q^{-16} -108 q^{-17} -72 q^{-18} +132 q^{-19} +115 q^{-20} +21 q^{-21} -184 q^{-22} -170 q^{-23} +150 q^{-24} +192 q^{-25} +92 q^{-26} -207 q^{-27} -256 q^{-28} +119 q^{-29} +211 q^{-30} +154 q^{-31} -174 q^{-32} -282 q^{-33} +76 q^{-34} +172 q^{-35} +181 q^{-36} -117 q^{-37} -262 q^{-38} +39 q^{-39} +112 q^{-40} +186 q^{-41} -57 q^{-42} -222 q^{-43} + q^{-44} +44 q^{-45} +180 q^{-46} +12 q^{-47} -168 q^{-48} -38 q^{-49} -29 q^{-50} +151 q^{-51} +74 q^{-52} -89 q^{-53} -50 q^{-54} -94 q^{-55} +85 q^{-56} +95 q^{-57} -5 q^{-58} -17 q^{-59} -112 q^{-60} +8 q^{-61} +58 q^{-62} +36 q^{-63} +32 q^{-64} -73 q^{-65} -27 q^{-66} +5 q^{-67} +21 q^{-68} +46 q^{-69} -21 q^{-70} -16 q^{-71} -15 q^{-72} -3 q^{-73} +25 q^{-74} -7 q^{-77} -7 q^{-78} +6 q^{-79} + q^{-80} +2 q^{-81} - q^{-82} -2 q^{-83} + q^{-84} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 48: |
Line 51: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 131]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 131]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], |
Line 68: |
Line 71: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 131]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_131_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 131]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_131_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 131]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 131]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 131]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 131]][t]</nowiki></pre></td></tr> |