9 6: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_6}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=6|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,6,-4,7,-5,8,-9,2,-8,3,-6,4,-7,5/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-15</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-17</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-19</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-21</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-23</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11], |
|||
X[11, 2, 12, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 6]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 5 2 3 |
|||
-5 + -- - -- + - + 5 t - 4 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 6]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 7 z + 8 z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 6]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, -6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 3 4 5 4 3 3 -4 -3 |
|||
-q + --- - --- + -- - -- + -- - -- + -- - q + q |
|||
11 10 9 8 7 6 5 |
|||
q q q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 6]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 2 -22 -20 2 -16 2 -10 |
|||
-q - --- - q + q + --- + q + --- + q |
|||
26 18 14 |
|||
q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 6]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 9 11 15 6 2 8 2 |
|||
-3 a - a + a + 2 a z - a z - 2 a z - a z + 7 a z + a z - |
|||
10 2 12 2 14 2 9 3 11 3 13 3 15 3 |
|||
3 a z + a z - 2 a z + 8 a z + 6 a z - a z + a z - |
|||
6 4 8 4 10 4 12 4 14 4 7 5 |
|||
5 a z + a z + 2 a z - 2 a z + 2 a z - 3 a z - |
|||
9 5 11 5 13 5 6 6 8 6 10 6 |
|||
10 a z - 5 a z + 2 a z + a z - 3 a z - 2 a z + |
|||
12 6 7 7 9 7 11 7 8 8 10 8 |
|||
2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -18}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 6]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 2 1 2 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
25 9 23 8 21 8 21 7 19 7 19 6 |
|||
q t q t q t q t q t q t |
|||
2 3 2 1 3 2 1 |
|||
------ + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
17 6 17 5 15 5 15 4 13 4 13 3 11 3 |
|||
q t q t q t q t q t q t q t |
|||
1 2 1 |
|||
------ + ----- + ---- |
|||
11 2 9 2 7 |
|||
q t q t q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:46, 27 August 2005
|
|
![]() |
Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 6's page at Knotilus! Visit 9 6's page at the original Knot Atlas! |
9 6 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 6 8 |
Conway Notation | [522] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 27, -6 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{15}-z a^{15}+2 z^4 a^{14}-2 z^2 a^{14}+2 z^5 a^{13}-z^3 a^{13}+2 z^6 a^{12}-2 z^4 a^{12}+z^2 a^{12}+2 z^7 a^{11}-5 z^5 a^{11}+6 z^3 a^{11}-2 z a^{11}+z^8 a^{10}-2 z^6 a^{10}+2 z^4 a^{10}-3 z^2 a^{10}+a^{10}+3 z^7 a^9-10 z^5 a^9+8 z^3 a^9-z a^9+z^8 a^8-3 z^6 a^8+z^4 a^8+z^2 a^8-a^8+z^7 a^7-3 z^5 a^7+2 z a^7+z^6 a^6-5 z^4 a^6+7 z^2 a^6-3 a^6} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{36}-2 q^{26}-q^{22}+q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{10}} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{186}-2 q^{184}+4 q^{182}-4 q^{180}+4 q^{178}-2 q^{176}-q^{174}+3 q^{172}-4 q^{170}+4 q^{168}-5 q^{166}+3 q^{164}-3 q^{162}-q^{160}+3 q^{158}-4 q^{156}+5 q^{154}-4 q^{152}+2 q^{150}-4 q^{146}+4 q^{144}-2 q^{142}-q^{140}+6 q^{138}-5 q^{136}+2 q^{134}+3 q^{132}-6 q^{130}+9 q^{128}-10 q^{126}+3 q^{124}-5 q^{120}+10 q^{118}-12 q^{116}+6 q^{114}-3 q^{112}-2 q^{110}+3 q^{108}-9 q^{106}+6 q^{104}-4 q^{102}+4 q^{98}-6 q^{96}+4 q^{94}+3 q^{92}-5 q^{90}+7 q^{88}-6 q^{86}+2 q^{84}+5 q^{82}-7 q^{80}+11 q^{78}-7 q^{76}+5 q^{74}+2 q^{72}-4 q^{70}+7 q^{68}-5 q^{66}+5 q^{64}+2 q^{58}-q^{56}+2 q^{54}+q^{50}} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{25}+q^{23}-q^{21}+q^{19}-q^{17}-q^{15}+q^{13}+2 q^9+q^5} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{66}-q^{64}+2 q^{62}-q^{60}+3 q^{56}-3 q^{54}-q^{52}+3 q^{50}-2 q^{48}-2 q^{46}+q^{44}+q^{42}-q^{40}-q^{38}+2 q^{36}-q^{34}-3 q^{32}+2 q^{30}-3 q^{26}+2 q^{24}+3 q^{22}-2 q^{20}+q^{18}+3 q^{16}+q^{10}} |
3 | |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{208}-q^{206}-q^{204}+4 q^{198}-q^{196}-2 q^{194}-3 q^{192}-3 q^{190}+8 q^{188}+3 q^{186}+q^{184}-6 q^{182}-10 q^{180}+6 q^{178}+8 q^{176}+9 q^{174}-6 q^{172}-20 q^{170}-3 q^{168}+10 q^{166}+22 q^{164}+5 q^{162}-24 q^{160}-17 q^{158}+q^{156}+25 q^{154}+16 q^{152}-13 q^{150}-17 q^{148}-12 q^{146}+11 q^{144}+17 q^{142}+2 q^{140}-5 q^{138}-12 q^{136}-3 q^{134}+5 q^{132}+8 q^{130}+7 q^{128}-5 q^{126}-11 q^{124}-q^{122}+12 q^{120}+10 q^{118}-3 q^{116}-15 q^{114}-4 q^{112}+15 q^{110}+10 q^{108}-6 q^{106}-20 q^{104}-8 q^{102}+16 q^{100}+14 q^{98}-19 q^{94}-14 q^{92}+9 q^{90}+14 q^{88}+10 q^{86}-9 q^{84}-14 q^{82}-3 q^{80}+2 q^{78}+15 q^{76}+6 q^{74}-6 q^{72}-9 q^{70}-13 q^{68}+5 q^{66}+10 q^{64}+7 q^{62}-16 q^{58}-6 q^{56}+3 q^{54}+10 q^{52}+9 q^{50}-6 q^{48}-6 q^{46}-4 q^{44}+3 q^{42}+8 q^{40}+q^{38}-2 q^{34}+3 q^{30}+q^{28}+q^{26}+q^{20}} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{305}+q^{303}+q^{301}-2 q^{295}-2 q^{293}+q^{291}+4 q^{289}+2 q^{287}+q^{285}-4 q^{283}-8 q^{281}-3 q^{279}+5 q^{277}+11 q^{275}+7 q^{273}-3 q^{271}-14 q^{269}-14 q^{267}+3 q^{265}+21 q^{263}+19 q^{261}-2 q^{259}-25 q^{257}-31 q^{255}-5 q^{253}+35 q^{251}+44 q^{249}+11 q^{247}-40 q^{245}-59 q^{243}-24 q^{241}+40 q^{239}+78 q^{237}+42 q^{235}-35 q^{233}-86 q^{231}-58 q^{229}+20 q^{227}+82 q^{225}+73 q^{223}-q^{221}-69 q^{219}-75 q^{217}-20 q^{215}+44 q^{213}+63 q^{211}+33 q^{209}-17 q^{207}-47 q^{205}-38 q^{203}-2 q^{201}+25 q^{199}+31 q^{197}+19 q^{195}-7 q^{193}-23 q^{191}-24 q^{189}-6 q^{187}+17 q^{185}+26 q^{183}+13 q^{181}-14 q^{179}-31 q^{177}-15 q^{175}+19 q^{173}+32 q^{171}+15 q^{169}-21 q^{167}-42 q^{165}-16 q^{163}+33 q^{161}+48 q^{159}+22 q^{157}-27 q^{155}-58 q^{153}-30 q^{151}+30 q^{149}+62 q^{147}+39 q^{145}-18 q^{143}-62 q^{141}-51 q^{139}+6 q^{137}+55 q^{135}+56 q^{133}+9 q^{131}-45 q^{129}-58 q^{127}-26 q^{125}+25 q^{123}+49 q^{121}+35 q^{119}-7 q^{117}-35 q^{115}-34 q^{113}-12 q^{111}+13 q^{109}+26 q^{107}+23 q^{105}+6 q^{103}-11 q^{101}-18 q^{99}-21 q^{97}-8 q^{95}+10 q^{93}+22 q^{91}+18 q^{89}+5 q^{87}-14 q^{85}-28 q^{83}-17 q^{81}+3 q^{79}+19 q^{77}+22 q^{75}+9 q^{73}-11 q^{71}-20 q^{69}-14 q^{67}+13 q^{63}+14 q^{61}+5 q^{59}-3 q^{57}-9 q^{55}-6 q^{53}+q^{51}+6 q^{49}+4 q^{47}+3 q^{45}-2 q^{41}+2 q^{37}+q^{35}+q^{33}+q^{31}+q^{25}} |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{420}-q^{418}-q^{416}+2 q^{410}+2 q^{406}-3 q^{404}-3 q^{402}-q^{398}+4 q^{396}+4 q^{394}+8 q^{392}-5 q^{390}-8 q^{388}-7 q^{386}-8 q^{384}+3 q^{382}+11 q^{380}+21 q^{378}-8 q^{374}-15 q^{372}-19 q^{370}-2 q^{368}+18 q^{366}+33 q^{364}+2 q^{362}-13 q^{360}-25 q^{358}-26 q^{356}+5 q^{354}+37 q^{352}+46 q^{350}-5 q^{348}-42 q^{346}-58 q^{344}-38 q^{342}+32 q^{340}+96 q^{338}+96 q^{336}-3 q^{334}-97 q^{332}-141 q^{330}-96 q^{328}+43 q^{326}+172 q^{324}+194 q^{322}+59 q^{320}-113 q^{318}-223 q^{316}-201 q^{314}-26 q^{312}+176 q^{310}+263 q^{308}+163 q^{306}-27 q^{304}-195 q^{302}-248 q^{300}-132 q^{298}+61 q^{296}+204 q^{294}+197 q^{292}+88 q^{290}-59 q^{288}-167 q^{286}-155 q^{284}-58 q^{282}+60 q^{280}+114 q^{278}+108 q^{276}+48 q^{274}-36 q^{272}-85 q^{270}-84 q^{268}-36 q^{266}+14 q^{264}+60 q^{262}+69 q^{260}+36 q^{258}-19 q^{256}-65 q^{254}-56 q^{252}-15 q^{250}+38 q^{248}+65 q^{246}+45 q^{244}-19 q^{242}-77 q^{240}-65 q^{238}+q^{236}+71 q^{234}+92 q^{232}+48 q^{230}-49 q^{228}-124 q^{226}-98 q^{224}+6 q^{222}+109 q^{220}+140 q^{218}+79 q^{216}-55 q^{214}-163 q^{212}-152 q^{210}-27 q^{208}+113 q^{206}+179 q^{204}+137 q^{202}-10 q^{200}-157 q^{198}-196 q^{196}-98 q^{194}+56 q^{192}+175 q^{190}+196 q^{188}+79 q^{186}-87 q^{184}-194 q^{182}-169 q^{180}-52 q^{178}+95 q^{176}+196 q^{174}+158 q^{172}+30 q^{170}-112 q^{168}-168 q^{166}-135 q^{164}-28 q^{162}+103 q^{160}+149 q^{158}+108 q^{156}+6 q^{154}-71 q^{152}-115 q^{150}-92 q^{148}-13 q^{146}+49 q^{144}+79 q^{142}+53 q^{140}+32 q^{138}-15 q^{136}-46 q^{134}-42 q^{132}-33 q^{130}-9 q^{128}+36 q^{124}+40 q^{122}+31 q^{120}+14 q^{118}-15 q^{116}-35 q^{114}-57 q^{112}-24 q^{110}+4 q^{108}+34 q^{106}+48 q^{104}+36 q^{102}+9 q^{100}-37 q^{98}-41 q^{96}-36 q^{94}-11 q^{92}+17 q^{90}+36 q^{88}+34 q^{86}+5 q^{84}-8 q^{82}-24 q^{80}-22 q^{78}-12 q^{76}+7 q^{74}+18 q^{72}+10 q^{70}+9 q^{68}-q^{66}-7 q^{64}-9 q^{62}-2 q^{60}+4 q^{58}+2 q^{56}+5 q^{54}+3 q^{52}+q^{50}-2 q^{48}+2 q^{44}+q^{40}+q^{38}+q^{36}+q^{30}} |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{36}-2 q^{26}-q^{22}+q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{10}} |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-2 q^{98}+4 q^{96}-6 q^{94}+7 q^{92}-10 q^{90}+12 q^{88}-10 q^{86}+11 q^{84}-10 q^{82}+10 q^{80}-10 q^{78}+7 q^{76}-10 q^{74}+8 q^{72}-4 q^{70}-q^{68}+10 q^{66}-16 q^{64}+26 q^{62}-31 q^{60}+38 q^{58}-40 q^{56}+36 q^{54}-35 q^{52}+24 q^{50}-22 q^{48}+2 q^{46}+2 q^{44}-18 q^{42}+20 q^{40}-24 q^{38}+28 q^{36}-18 q^{34}+22 q^{32}-8 q^{30}+12 q^{28}-2 q^{26}+4 q^{24}+q^{20}} |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{90}-q^{84}+q^{80}+q^{78}+q^{76}-q^{74}+q^{70}-2 q^{66}+q^{62}-2 q^{60}-2 q^{58}-q^{56}-3 q^{52}-2 q^{50}-q^{48}-3 q^{46}-q^{44}+q^{42}+q^{40}+4 q^{36}+4 q^{34}+2 q^{32}+q^{30}+3 q^{28}+2 q^{26}+q^{20}} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}-q^{80}+2 q^{76}-2 q^{74}-q^{72}+3 q^{70}-q^{68}-2 q^{66}+3 q^{64}-2 q^{60}+q^{58}-q^{56}-q^{54}-2 q^{52}+q^{50}-4 q^{46}-q^{44}-q^{42}-4 q^{40}-q^{38}+3 q^{36}+4 q^{32}+4 q^{30}+2 q^{28}+3 q^{26}+2 q^{24}+q^{20}} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{47}-q^{43}+q^{41}-q^{39}-2 q^{35}-q^{33}-q^{31}+2 q^{27}+q^{25}+3 q^{23}+q^{21}+2 q^{19}+q^{15}} |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{104}-q^{100}+q^{98}+2 q^{96}-q^{94}-q^{92}+2 q^{90}+q^{88}-q^{86}+2 q^{82}-q^{80}-2 q^{78}+q^{76}-q^{74}-3 q^{72}-5 q^{66}-3 q^{64}-2 q^{62}-4 q^{60}-6 q^{58}-3 q^{56}-q^{54}-q^{52}+q^{50}+4 q^{48}+5 q^{46}+5 q^{44}+7 q^{42}+4 q^{40}+4 q^{38}+3 q^{36}+2 q^{34}+q^{30}} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{58}-q^{54}-q^{48}-2 q^{44}-q^{42}-2 q^{40}+2 q^{34}+2 q^{32}+2 q^{30}+3 q^{28}+q^{26}+2 q^{24}+q^{20}} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{82}+q^{80}-2 q^{78}+2 q^{76}-2 q^{74}+3 q^{72}-3 q^{70}+3 q^{68}-2 q^{66}+q^{64}-2 q^{60}+3 q^{58}-5 q^{56}+5 q^{54}-6 q^{52}+5 q^{50}-6 q^{48}+4 q^{46}-3 q^{44}+q^{42}-q^{38}+3 q^{36}-2 q^{34}+4 q^{32}-2 q^{30}+4 q^{28}-q^{26}+2 q^{24}+q^{20}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{132}-q^{128}-q^{126}+q^{124}+2 q^{122}-2 q^{118}-2 q^{116}+q^{114}+3 q^{112}+q^{110}-2 q^{108}-2 q^{106}+q^{104}+3 q^{102}-3 q^{98}-q^{96}+2 q^{94}+q^{92}-3 q^{90}-2 q^{88}+q^{86}+2 q^{84}-q^{82}-q^{80}+q^{76}-q^{74}-3 q^{72}-2 q^{70}+q^{68}+q^{66}-3 q^{64}-4 q^{62}+4 q^{58}+2 q^{56}-q^{54}-2 q^{52}+3 q^{50}+4 q^{48}+2 q^{46}-q^{44}+q^{42}+2 q^{40}+2 q^{38}+q^{30}} |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-q^{112}+q^{110}-q^{108}+2 q^{106}-2 q^{104}+q^{102}-2 q^{100}+3 q^{98}-2 q^{96}+q^{94}-2 q^{92}+2 q^{90}+q^{84}-2 q^{82}+3 q^{80}-4 q^{78}+3 q^{76}-6 q^{74}+3 q^{72}-5 q^{70}+3 q^{68}-5 q^{66}+2 q^{64}-4 q^{62}-3 q^{58}-2 q^{56}-2 q^{52}+2 q^{50}+6 q^{46}+q^{44}+6 q^{42}+q^{40}+5 q^{38}+q^{36}+2 q^{34}+q^{30}} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{186}-2 q^{184}+4 q^{182}-4 q^{180}+4 q^{178}-2 q^{176}-q^{174}+3 q^{172}-4 q^{170}+4 q^{168}-5 q^{166}+3 q^{164}-3 q^{162}-q^{160}+3 q^{158}-4 q^{156}+5 q^{154}-4 q^{152}+2 q^{150}-4 q^{146}+4 q^{144}-2 q^{142}-q^{140}+6 q^{138}-5 q^{136}+2 q^{134}+3 q^{132}-6 q^{130}+9 q^{128}-10 q^{126}+3 q^{124}-5 q^{120}+10 q^{118}-12 q^{116}+6 q^{114}-3 q^{112}-2 q^{110}+3 q^{108}-9 q^{106}+6 q^{104}-4 q^{102}+4 q^{98}-6 q^{96}+4 q^{94}+3 q^{92}-5 q^{90}+7 q^{88}-6 q^{86}+2 q^{84}+5 q^{82}-7 q^{80}+11 q^{78}-7 q^{76}+5 q^{74}+2 q^{72}-4 q^{70}+7 q^{68}-5 q^{66}+5 q^{64}+2 q^{58}-q^{56}+2 q^{54}+q^{50}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{15}-z a^{15}+2 z^4 a^{14}-2 z^2 a^{14}+2 z^5 a^{13}-z^3 a^{13}+2 z^6 a^{12}-2 z^4 a^{12}+z^2 a^{12}+2 z^7 a^{11}-5 z^5 a^{11}+6 z^3 a^{11}-2 z a^{11}+z^8 a^{10}-2 z^6 a^{10}+2 z^4 a^{10}-3 z^2 a^{10}+a^{10}+3 z^7 a^9-10 z^5 a^9+8 z^3 a^9-z a^9+z^8 a^8-3 z^6 a^8+z^4 a^8+z^2 a^8-a^8+z^7 a^7-3 z^5 a^7+2 z a^7+z^6 a^6-5 z^4 a^6+7 z^2 a^6-3 a^6} |
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ | |||||||||
-5 | 1 | 1 | ||||||||||||||||||
-7 | 1 | 1 | 0 | |||||||||||||||||
-9 | 2 | 2 | ||||||||||||||||||
-11 | 1 | 1 | 0 | |||||||||||||||||
-13 | 3 | 2 | 1 | |||||||||||||||||
-15 | 2 | 1 | -1 | |||||||||||||||||
-17 | 2 | 3 | -1 | |||||||||||||||||
-19 | 1 | 2 | 1 | |||||||||||||||||
-21 | 1 | 2 | -1 | |||||||||||||||||
-23 | 1 | 1 | ||||||||||||||||||
-25 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 6]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 6]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17],X[9, 18, 10, 1], X[15, 6, 16, 7], X[17, 8, 18, 9], X[13, 10, 14, 11],X[11, 2, 12, 3]] |
In[4]:= | GaussCode[Knot[9, 6]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5] |
In[5]:= | BR[Knot[9, 6]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -1, -2, 1, -2, -2}] |
In[6]:= | alex = Alexander[Knot[9, 6]][t] |
Out[6]= | 2 4 5 2 3 |
In[7]:= | Conway[Knot[9, 6]][z] |
Out[7]= | 2 4 6 1 + 7 z + 8 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 6]} |
In[9]:= | {KnotDet[Knot[9, 6]], KnotSignature[Knot[9, 6]]} |
Out[9]= | {27, -6} |
In[10]:= | J=Jones[Knot[9, 6]][q] |
Out[10]= | -12 2 3 4 5 4 3 3 -4 -3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 6]} |
In[12]:= | A2Invariant[Knot[9, 6]][q] |
Out[12]= | -36 2 -22 -20 2 -16 2 -10 |
In[13]:= | Kauffman[Knot[9, 6]][a, z] |
Out[13]= | 6 8 10 7 9 11 15 6 2 8 2 |
In[14]:= | {Vassiliev[2][Knot[9, 6]], Vassiliev[3][Knot[9, 6]]} |
Out[14]= | {0, -18} |
In[15]:= | Kh[Knot[9, 6]][q, t] |
Out[15]= | -7 -5 1 1 1 2 1 2 |