10 40: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_40}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=40|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,8,-5,9,-10,2,-3,4,-8,7,-6,5,-9,6,-7,3/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], |
|||
X[7, 17, 8, 16], X[15, 19, 16, 18], X[19, 15, 20, 14], |
|||
X[13, 7, 14, 6], X[17, 9, 18, 8], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, |
|||
6, -7, 3]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 40]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, 2, 2, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 40]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 17 2 3 |
|||
-21 + -- - -- + -- + 17 t - 8 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 40]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z + 4 z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 40]], KnotSignature[Knot[10, 40]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{75, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 40]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
-6 - q + - + 10 q - 11 q + 13 q - 12 q + 9 q - 6 q + 3 q - q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 40]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 8 12 14 16 |
|||
-1 - q + q - q + 3 q - q + 4 q + q + q - 3 q + 2 q - |
|||
18 20 22 24 |
|||
q - q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 40]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
-6 3 z 2 z 2 z 2 3 z z z 7 z |
|||
-1 + a - -- + -- + --- + --- + a z + 4 z + ---- + -- + -- + ---- - |
|||
2 9 3 a 8 6 4 2 |
|||
a a a a a a a |
|||
3 3 3 3 3 4 4 4 |
|||
2 z 2 z 6 z 3 z z 3 4 6 z 5 z 2 z |
|||
---- + ---- + ---- + ---- - -- - 2 a z - 6 z - ---- - ---- - ---- - |
|||
9 7 5 3 a 8 6 4 |
|||
a a a a a a a |
|||
4 5 5 5 5 5 6 6 |
|||
9 z z 6 z 13 z 12 z 5 z 5 6 3 z 5 z |
|||
---- + -- - ---- - ----- - ----- - ---- + a z + 3 z + ---- - ---- + |
|||
2 9 7 5 3 a 8 4 |
|||
a a a a a a a |
|||
6 7 7 7 7 8 8 8 9 9 |
|||
z 4 z 7 z 7 z 4 z 3 z 6 z 3 z z z |
|||
-- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + -- |
|||
2 7 5 3 a 6 4 2 5 3 |
|||
a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 40]], Vassiliev[3][Knot[10, 40]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 40]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 4 2 q 3 5 |
|||
6 q + 5 q + ----- + ----- + ---- + --- + --- + 6 q t + 5 q t + |
|||
5 3 3 2 2 q t t |
|||
q t q t q t |
|||
5 2 7 2 7 3 9 3 9 4 11 4 |
|||
7 q t + 6 q t + 5 q t + 7 q t + 4 q t + 5 q t + |
|||
11 5 13 5 13 6 15 6 17 7 |
|||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 20:50, 27 August 2005
|
|
Visit 10 40's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 40's page at Knotilus! Visit 10 40's page at the original Knot Atlas! |
10 40 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3 |
Dowker-Thistlethwaite code | 4 10 12 16 2 20 6 18 8 14 |
Conway Notation | [222112] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 75, 2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4-q^2-1+3 q^{-2} - q^{-4} +4 q^{-6} + q^{-8} + q^{-12} -3 q^{-14} +2 q^{-16} - q^{-18} - q^{-20} + q^{-22} - q^{-24} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-7 q^{22}-2 q^{20}+16 q^{18}-33 q^{16}+47 q^{14}-51 q^{12}+33 q^{10}+2 q^8-50 q^6+101 q^4-129 q^2+121-72 q^{-2} -17 q^{-4} +104 q^{-6} -167 q^{-8} +180 q^{-10} -128 q^{-12} +42 q^{-14} +60 q^{-16} -129 q^{-18} +140 q^{-20} -83 q^{-22} -4 q^{-24} +84 q^{-26} -117 q^{-28} +87 q^{-30} +6 q^{-32} -105 q^{-34} +189 q^{-36} -204 q^{-38} +146 q^{-40} -22 q^{-42} -125 q^{-44} +230 q^{-46} -268 q^{-48} +222 q^{-50} -104 q^{-52} -35 q^{-54} +148 q^{-56} -201 q^{-58} +176 q^{-60} -92 q^{-62} -19 q^{-64} +94 q^{-66} -114 q^{-68} +68 q^{-70} +21 q^{-72} -98 q^{-74} +142 q^{-76} -123 q^{-78} +47 q^{-80} +49 q^{-82} -139 q^{-84} +179 q^{-86} -159 q^{-88} +92 q^{-90} -5 q^{-92} -71 q^{-94} +115 q^{-96} -120 q^{-98} +93 q^{-100} -47 q^{-102} - q^{-104} +31 q^{-106} -47 q^{-108} +43 q^{-110} -30 q^{-112} +17 q^{-114} -2 q^{-116} -6 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+2 q^{31}+q^{29}-3 q^{27}-4 q^{25}+7 q^{23}+11 q^{21}-14 q^{19}-23 q^{17}+17 q^{15}+44 q^{13}-15 q^{11}-74 q^9+3 q^7+105 q^5+20 q^3-126 q-61 q^{-1} +143 q^{-3} +98 q^{-5} -131 q^{-7} -132 q^{-9} +112 q^{-11} +153 q^{-13} -71 q^{-15} -156 q^{-17} +32 q^{-19} +143 q^{-21} +9 q^{-23} -115 q^{-25} -55 q^{-27} +80 q^{-29} +87 q^{-31} -37 q^{-33} -124 q^{-35} -2 q^{-37} +141 q^{-39} +54 q^{-41} -151 q^{-43} -95 q^{-45} +141 q^{-47} +126 q^{-49} -114 q^{-51} -145 q^{-53} +78 q^{-55} +145 q^{-57} -40 q^{-59} -127 q^{-61} +8 q^{-63} +98 q^{-65} +12 q^{-67} -67 q^{-69} -18 q^{-71} +39 q^{-73} +17 q^{-75} -20 q^{-77} -12 q^{-79} +10 q^{-81} +6 q^{-83} -4 q^{-85} -3 q^{-87} + q^{-89} +2 q^{-91} - q^{-93} } |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}+3 q^{14}-4 q^{12}+7 q^{10}-11 q^8+11 q^6-15 q^4+17 q^2-22+17 q^{-2} -19 q^{-4} +20 q^{-6} -13 q^{-8} +9 q^{-10} + q^{-12} +4 q^{-14} +16 q^{-16} -17 q^{-18} +25 q^{-20} -27 q^{-22} +37 q^{-24} -38 q^{-26} +34 q^{-28} -38 q^{-30} +36 q^{-32} -28 q^{-34} +21 q^{-36} -20 q^{-38} +9 q^{-40} -6 q^{-44} +6 q^{-46} -16 q^{-48} +19 q^{-50} -18 q^{-52} +18 q^{-54} -20 q^{-56} +18 q^{-58} -13 q^{-60} +11 q^{-62} -10 q^{-64} +7 q^{-66} -4 q^{-68} +3 q^{-70} -2 q^{-72} + q^{-74} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 40. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
17 | 1 | -1 | |||||||||||||||||||
15 | 2 | 2 | |||||||||||||||||||
13 | 4 | 1 | -3 | ||||||||||||||||||
11 | 5 | 2 | 3 | ||||||||||||||||||
9 | 7 | 4 | -3 | ||||||||||||||||||
7 | 6 | 5 | 1 | ||||||||||||||||||
5 | 5 | 7 | 2 | ||||||||||||||||||
3 | 5 | 6 | -1 | ||||||||||||||||||
1 | 2 | 6 | 4 | ||||||||||||||||||
-1 | 1 | 4 | -3 | ||||||||||||||||||
-3 | 2 | 2 | |||||||||||||||||||
-5 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 40]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 40]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12],X[7, 17, 8, 16], X[15, 19, 16, 18], X[19, 15, 20, 14],X[13, 7, 14, 6], X[17, 9, 18, 8], X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[10, 40]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3] |
In[5]:= | BR[Knot[10, 40]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, 2, -3, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[10, 40]][t] |
Out[6]= | 2 8 17 2 3 |
In[7]:= | Conway[Knot[10, 40]][z] |
Out[7]= | 2 4 6 1 + 3 z + 4 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 40], Knot[10, 103]} |
In[9]:= | {KnotDet[Knot[10, 40]], KnotSignature[Knot[10, 40]]} |
Out[9]= | {75, 2} |
In[10]:= | J=Jones[Knot[10, 40]][q] |
Out[10]= | -2 3 2 3 4 5 6 7 8 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 40], Knot[10, 103]} |
In[12]:= | A2Invariant[Knot[10, 40]][q] |
Out[12]= | -6 -4 -2 2 4 6 8 12 14 16 |
In[13]:= | Kauffman[Knot[10, 40]][a, z] |
Out[13]= | 2 2 2 2-6 3 z 2 z 2 z 2 3 z z z 7 z |
In[14]:= | {Vassiliev[2][Knot[10, 40]], Vassiliev[3][Knot[10, 40]]} |
Out[14]= | {0, 4} |
In[15]:= | Kh[Knot[10, 40]][q, t] |
Out[15]= | 3 1 2 1 4 2 q 3 5 |