9 10: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_10}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=10|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-9,5,-1,3,-4,6,-2,9,-8,7,-5,4,-3/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], |
|||
X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 16, 5, 15], X[14, 6, 15, 5], |
|||
X[6, 14, 7, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 10]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 10]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 8 2 |
|||
9 + -- - - - 8 t + 4 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 10]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + 8 z + 4 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 10]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 10]], KnotSignature[Knot[9, 10]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 10]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 11 |
|||
q - 2 q + 4 q - 5 q + 6 q - 5 q + 5 q - 3 q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 10]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 10]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 16 20 22 24 26 28 30 32 |
|||
q - q + q + 2 q + 2 q + q + q + q - 2 q - q - q - |
|||
34 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 10]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 3 3 |
|||
2 -8 2 4 z 4 z 11 z 2 z 7 z 2 z 4 z z |
|||
--- + a - -- + --- - --- - ----- - ---- + ---- - ---- - ---- - --- + |
|||
10 6 13 9 10 8 6 4 13 11 |
|||
a a a a a a a a a a |
|||
3 3 3 4 4 4 4 4 5 5 |
|||
9 z 3 z 3 z 2 z 9 z 3 z 7 z z z z |
|||
---- + ---- - ---- - ---- + ---- + ---- - ---- + -- + --- - --- - |
|||
9 7 5 12 10 8 6 4 13 11 |
|||
a a a a a a a a a a |
|||
5 5 5 6 6 6 6 7 7 7 |
|||
7 z 3 z 2 z z 3 z z 3 z z 3 z 2 z |
|||
---- - ---- + ---- + --- - ---- - -- + ---- + --- + ---- + ---- + |
|||
9 7 5 12 10 8 6 11 9 7 |
|||
a a a a a a a a a a |
|||
8 8 |
|||
z z |
|||
--- + -- |
|||
10 8 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 10]], Vassiliev[3][Knot[9, 10]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 22}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 10]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 7 2 9 2 9 3 11 3 11 4 |
|||
q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 3 q t + |
|||
13 4 13 5 15 5 15 6 17 6 19 7 |
|||
3 q t + 2 q t + 3 q t + 3 q t + 2 q t + 3 q t + |
|||
19 8 23 9 |
|||
q t + q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:52, 27 August 2005
|
|
![]() |
Visit 9 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 10's page at Knotilus! Visit 9 10's page at the original Knot Atlas! |
9 10 Quick Notes |
Knot presentations
Planar diagram presentation | X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13 |
Gauss code | 1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3 |
Dowker-Thistlethwaite code | 8 12 14 16 18 2 6 4 10 |
Conway Notation | [333] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} -2 q^{-14} +4 q^{-16} -8 q^{-18} +17 q^{-20} -22 q^{-22} +32 q^{-24} -42 q^{-26} +58 q^{-28} -56 q^{-30} +60 q^{-32} -54 q^{-34} +43 q^{-36} -16 q^{-38} -12 q^{-40} +44 q^{-42} -69 q^{-44} +100 q^{-46} -114 q^{-48} +118 q^{-50} -119 q^{-52} +94 q^{-54} -80 q^{-56} +46 q^{-58} -24 q^{-60} -8 q^{-62} +36 q^{-64} -46 q^{-66} +56 q^{-68} -56 q^{-70} +56 q^{-72} -44 q^{-74} +30 q^{-76} -28 q^{-78} +16 q^{-80} -12 q^{-82} +8 q^{-84} -4 q^{-86} +4 q^{-88} + q^{-92} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} - q^{-16} +3 q^{-18} +2 q^{-20} -3 q^{-22} - q^{-24} +4 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} +4 q^{-34} - q^{-36} -2 q^{-38} +2 q^{-40} + q^{-42} +4 q^{-46} +4 q^{-48} +2 q^{-54} -6 q^{-58} - q^{-60} -3 q^{-64} -6 q^{-66} -3 q^{-68} - q^{-72} - q^{-74} +2 q^{-78} + q^{-80} +2 q^{-82} + q^{-84} + q^{-86} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-18} -3 q^{-20} + q^{-22} +6 q^{-24} -4 q^{-26} + q^{-28} +7 q^{-30} -2 q^{-32} + q^{-34} +6 q^{-36} + q^{-38} +2 q^{-44} -2 q^{-46} -4 q^{-48} +3 q^{-50} -8 q^{-54} +2 q^{-56} - q^{-58} -7 q^{-60} + q^{-62} - q^{-66} +2 q^{-68} +2 q^{-70} + q^{-74} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-11} + q^{-13} - q^{-15} + q^{-17} +2 q^{-21} + q^{-23} + q^{-25} +2 q^{-27} + q^{-29} +2 q^{-31} + q^{-35} -2 q^{-37} - q^{-39} -2 q^{-41} - q^{-43} - q^{-45} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-20} + q^{-24} - q^{-26} - q^{-28} +3 q^{-30} +2 q^{-32} -2 q^{-34} + q^{-36} +5 q^{-38} +2 q^{-40} -2 q^{-42} +4 q^{-44} +8 q^{-46} + q^{-50} +6 q^{-52} +3 q^{-54} - q^{-56} +4 q^{-58} +5 q^{-60} - q^{-64} +2 q^{-66} -4 q^{-68} -11 q^{-70} -7 q^{-72} -5 q^{-74} -10 q^{-76} -8 q^{-78} +2 q^{-82} + q^{-84} +2 q^{-86} +5 q^{-88} +3 q^{-90} + q^{-92} + q^{-94} + q^{-96} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} + q^{-16} - q^{-18} + q^{-22} +2 q^{-26} + q^{-28} +2 q^{-30} + q^{-32} +2 q^{-34} + q^{-36} +2 q^{-38} + q^{-40} + q^{-44} -2 q^{-46} - q^{-48} -2 q^{-50} -2 q^{-52} - q^{-54} - q^{-56} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-16} -4 q^{-18} +5 q^{-20} -5 q^{-22} +6 q^{-24} -4 q^{-26} +5 q^{-28} - q^{-30} +5 q^{-34} -6 q^{-36} +9 q^{-38} -10 q^{-40} +10 q^{-42} -10 q^{-44} +8 q^{-46} -6 q^{-48} +3 q^{-50} -2 q^{-54} +4 q^{-56} -5 q^{-58} +5 q^{-60} -5 q^{-62} +4 q^{-64} -3 q^{-66} +2 q^{-68} -2 q^{-70} - q^{-74} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-20} + q^{-22} -2 q^{-24} +3 q^{-26} -4 q^{-28} +4 q^{-30} -3 q^{-32} +6 q^{-34} -3 q^{-36} +4 q^{-38} - q^{-40} +5 q^{-42} +2 q^{-44} - q^{-46} +5 q^{-48} -2 q^{-50} +9 q^{-52} -5 q^{-54} +8 q^{-56} -7 q^{-58} +9 q^{-60} -7 q^{-62} +5 q^{-64} -8 q^{-66} +2 q^{-68} -3 q^{-70} - q^{-72} -2 q^{-74} -4 q^{-76} +2 q^{-78} -5 q^{-80} +2 q^{-82} -6 q^{-84} +3 q^{-86} -4 q^{-88} +2 q^{-90} -2 q^{-92} +3 q^{-94} +2 q^{-98} + q^{-102} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -9 q^{-46} +11 q^{-48} -8 q^{-50} +3 q^{-52} +5 q^{-54} -13 q^{-56} +21 q^{-58} -19 q^{-60} +12 q^{-62} -2 q^{-64} -10 q^{-66} +18 q^{-68} -17 q^{-70} +14 q^{-72} -2 q^{-74} -7 q^{-76} +13 q^{-78} -9 q^{-80} - q^{-82} +12 q^{-84} -19 q^{-86} +18 q^{-88} -9 q^{-90} -4 q^{-92} +21 q^{-94} -28 q^{-96} +31 q^{-98} -20 q^{-100} +6 q^{-102} +11 q^{-104} -21 q^{-106} +26 q^{-108} -18 q^{-110} +12 q^{-112} +2 q^{-114} -10 q^{-116} +15 q^{-118} -10 q^{-120} -2 q^{-122} +9 q^{-124} -16 q^{-126} +10 q^{-128} -3 q^{-130} -12 q^{-132} +18 q^{-134} -20 q^{-136} +15 q^{-138} -10 q^{-140} -9 q^{-142} +13 q^{-144} -16 q^{-146} +13 q^{-148} -9 q^{-150} +2 q^{-152} +3 q^{-154} -4 q^{-156} +6 q^{-158} -6 q^{-160} +4 q^{-162} - q^{-164} + q^{-168} -2 q^{-170} +2 q^{-172} + q^{-176} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 10"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (8, 22) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 9 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
23 | 1 | -1 | ||||||||||||||||||
21 | 0 | |||||||||||||||||||
19 | 3 | 1 | -2 | |||||||||||||||||
17 | 2 | 2 | ||||||||||||||||||
15 | 3 | 3 | 0 | |||||||||||||||||
13 | 3 | 2 | 1 | |||||||||||||||||
11 | 2 | 3 | 1 | |||||||||||||||||
9 | 2 | 3 | -1 | |||||||||||||||||
7 | 2 | 2 | ||||||||||||||||||
5 | 1 | 2 | -1 | |||||||||||||||||
3 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 10]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 10]] |
Out[3]= | PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17],X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 16, 5, 15], X[14, 6, 15, 5],X[6, 14, 7, 13]] |
In[4]:= | GaussCode[Knot[9, 10]] |
Out[4]= | GaussCode[1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3] |
In[5]:= | BR[Knot[9, 10]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, 2, 2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 10]][t] |
Out[6]= | 4 8 2 |
In[7]:= | Conway[Knot[9, 10]][z] |
Out[7]= | 2 4 1 + 8 z + 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 10]} |
In[9]:= | {KnotDet[Knot[9, 10]], KnotSignature[Knot[9, 10]]} |
Out[9]= | {33, 4} |
In[10]:= | J=Jones[Knot[9, 10]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 11 q - 2 q + 4 q - 5 q + 6 q - 5 q + 5 q - 3 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 10]} |
In[12]:= | A2Invariant[Knot[9, 10]][q] |
Out[12]= | 6 8 10 16 20 22 24 26 28 30 32 |
In[13]:= | Kauffman[Knot[9, 10]][a, z] |
Out[13]= | 2 2 2 2 3 32 -8 2 4 z 4 z 11 z 2 z 7 z 2 z 4 z z |
In[14]:= | {Vassiliev[2][Knot[9, 10]], Vassiliev[3][Knot[9, 10]]} |
Out[14]= | {0, 22} |
In[15]:= | Kh[Knot[9, 10]][q, t] |
Out[15]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 |