10 28: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
Line 1: Line 1:
<!-- -->
{{Template:Basic Knot Invariants|name=10_28}}

<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>

<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=10|k=28|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-6,7,-10,2,-8,9,-3,4,-7,6,-5,3,-9,8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>5</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 28]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 28]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[13, 19, 14, 18], X[5, 15, 6, 14],
X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[11, 1, 12, 20],
X[19, 13, 20, 12], X[9, 2, 10, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 28]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5,
3, -9, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 28]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, 2, 2, 3, -2, -4, 3, -4, -4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 28]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 13 2
19 + -- - -- - 13 t + 4 t
2 t
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 28]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 + 3 z + 4 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 28], Knot[10, 37]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 28]], KnotSignature[Knot[10, 28]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{53, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 28]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3 4 5 6 7
7 - q + -- - - - 8 q + 9 q - 7 q + 6 q - 4 q + 2 q - q
2 q
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 28]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 28]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 2 -2 4 6 8 14 16 22
-1 - q + q + q - -- + q + 2 q + q + 3 q + q - 2 q - q
4
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 28]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-6 3 4 z 6 z 2 z z 2 5 z 10 z
-1 + a - -- - --- - --- - --- + - + a z + 4 z - ---- + ----- -
2 7 5 3 a 6 2
a a a a a a
3 3 3 3 4
2 2 8 z 18 z 13 z 2 z 3 3 3 4 12 z
a z + ---- + ----- + ----- - ---- - 4 a z + a z - 8 z + ----- +
7 5 3 a 6
a a a a
4 4 5 5 5 5
11 z 12 z 2 4 5 z 12 z 18 z 6 z 5
----- - ----- + 3 a z - ---- - ----- - ----- - ---- + 5 a z +
4 2 7 5 3 a
a a a a a
6 6 6 7 7 7 8 8 8
6 9 z 16 z z z 4 z 5 z 2 z 5 z 3 z
6 z - ---- - ----- - -- + -- + ---- + ---- + ---- + ---- + ---- +
6 4 2 7 3 a 6 4 2
a a a a a a a a
9 9
z z
-- + --
5 3
a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 28]], Vassiliev[3][Knot[10, 28]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 4}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 28]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 3 2 3
- + 4 q + ----- + ----- + ----- + ---- + --- + 5 q t + 3 q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
3 2 5 2 5 3 7 3 7 4 9 4 9 5
4 q t + 5 q t + 3 q t + 4 q t + 3 q t + 3 q t + q t +
11 5 11 6 13 6 15 7
3 q t + q t + q t + q t</nowiki></pre></td></tr>
</table>

Revision as of 20:53, 27 August 2005


10 27.gif

10_27

10 29.gif

10_29

10 28.gif Visit 10 28's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 28's page at Knotilus!

Visit 10 28's page at the original Knot Atlas!

10 28 Quick Notes


10 28 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X13,19,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X11,1,12,20 X19,13,20,12 X9,2,10,3
Gauss code -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 3, -9, 8
Dowker-Thistlethwaite code 4 10 14 16 2 20 18 8 6 12
Conway Notation [31312]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-8]
Hyperbolic Volume 10.2647
A-Polynomial See Data:10 28/A-polynomial

[edit Notes for 10 28's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 28's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 53, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 28. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-3-2-101234567χ
15          1-1
13         1 1
11        31 -2
9       31  2
7      43   -1
5     53    2
3    34     1
1   45      -1
-1  24       2
-3 13        -2
-5 2         2
-71          -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[10, 28]]
Out[2]=  
10
In[3]:=
PD[Knot[10, 28]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[13, 19, 14, 18], X[5, 15, 6, 14], 
 X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[11, 1, 12, 20], 

X[19, 13, 20, 12], X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[10, 28]]
Out[4]=  
GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 
  3, -9, 8]
In[5]:=
BR[Knot[10, 28]]
Out[5]=  
BR[5, {1, 1, 2, -1, 2, 2, 3, -2, -4, 3, -4, -4}]
In[6]:=
alex = Alexander[Knot[10, 28]][t]
Out[6]=  
     4    13             2

19 + -- - -- - 13 t + 4 t

     2   t
t
In[7]:=
Conway[Knot[10, 28]][z]
Out[7]=  
       2      4
1 + 3 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[10, 28], Knot[10, 37]}
In[9]:=
{KnotDet[Knot[10, 28]], KnotSignature[Knot[10, 28]]}
Out[9]=  
{53, 0}
In[10]:=
J=Jones[Knot[10, 28]][q]
Out[10]=  
     -3   3    5            2      3      4      5      6    7

7 - q + -- - - - 8 q + 9 q - 7 q + 6 q - 4 q + 2 q - q

          2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 28]}
In[12]:=
A2Invariant[Knot[10, 28]][q]
Out[12]=  
      -10    -8    -6   2     -2      4    6      8    14      16    22

-1 - q + q + q - -- + q + 2 q + q + 3 q + q - 2 q - q

                        4
q
In[13]:=
Kauffman[Knot[10, 28]][a, z]
Out[13]=  
                                                      2       2
     -6   3    4 z   6 z   2 z   z            2   5 z    10 z

-1 + a - -- - --- - --- - --- + - + a z + 4 z - ---- + ----- -

           2    7     5     3    a                  6      2
          a    a     a     a                       a      a

            3       3       3      3                               4
  2  2   8 z    18 z    13 z    2 z         3    3  3      4   12 z
 a  z  + ---- + ----- + ----- - ---- - 4 a z  + a  z  - 8 z  + ----- + 
           7      5       3      a                               6
          a      a       a                                      a

     4       4                5       5       5      5
 11 z    12 z       2  4   5 z    12 z    18 z    6 z         5
 ----- - ----- + 3 a  z  - ---- - ----- - ----- - ---- + 5 a z  + 
   4       2                 7      5       3      a
  a       a                 a      a       a

           6       6    6    7      7      7      8      8      8
    6   9 z    16 z    z    z    4 z    5 z    2 z    5 z    3 z
 6 z  - ---- - ----- - -- + -- + ---- + ---- + ---- + ---- + ---- + 
          6      4      2    7     3     a       6      4      2
         a      a      a    a     a             a      a      a

  9    9
 z    z
 -- + --
  5    3
a a
In[14]:=
{Vassiliev[2][Knot[10, 28]], Vassiliev[3][Knot[10, 28]]}
Out[14]=  
{0, 4}
In[15]:=
Kh[Knot[10, 28]][q, t]
Out[15]=  
4           1       2       1      3      2               3

- + 4 q + ----- + ----- + ----- + ---- + --- + 5 q t + 3 q t + q 7 3 5 2 3 2 3 q t

         q  t    q  t    q  t    q  t

    3  2      5  2      5  3      7  3      7  4      9  4    9  5
 4 q  t  + 5 q  t  + 3 q  t  + 4 q  t  + 3 q  t  + 3 q  t  + q  t  + 

    11  5    11  6    13  6    15  7
3 q t + q t + q t + q t