10 5: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_5}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,7,-5,8,-6,9,-10,2,-3,4,-7,5,-8,6,-9,3/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-3</td  ><td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=6.66667%>5</td  ><td width=6.66667%>6</td  ><td width=6.66667%>7</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> | |||
| <tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> | |||
| <tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 5]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 5]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14],  | |||
|   X[7, 17, 8, 16], X[9, 19, 10, 18], X[15, 7, 16, 6], X[17, 9, 18, 8],  | |||
|   X[19, 11, 20, 10], X[11, 2, 12, 3]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 5]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8,  | |||
|   6, -9, 3]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 5]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, -2, 1, -2, -2}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 5]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4   3    5    5            2      3    4 | |||
| 5 + t   - -- + -- - - - 5 t + 5 t  - 3 t  + t | |||
|            3    2   t | |||
|           t    t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 5]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8 | |||
| 1 + 4 z  + 7 z  + 5 z  + z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 5]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 5]], KnotSignature[Knot[10, 5]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 4}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 5]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    1            2      3      4      5      6      7      8    9 | |||
| 2 - - - 2 q + 4 q  - 4 q  + 5 q  - 5 q  + 4 q  - 3 q  + 2 q  - q | |||
|     q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 5]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 5]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -2    4      6    8      10    12    14    22    26 | |||
| -q   + q  + 2 q  + q  + 2 q   - q   + q   - q   - q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 5]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                              2    2      2       2 | |||
| 3    5     -2    z    z    3 z   2 z   z   2 z    z    9 z    22 z | |||
| -- + -- + a   - --- - -- - --- - --- - - - ---- + -- - ---- - ----- -  | |||
|  6    4          11    7    5     3    a    10     8     6      4 | |||
| a    a          a     a    a     a         a      a     a      a | |||
|       2    3     3      3      3      3      3      4      4       4 | |||
|   10 z    z     z    3 z    6 z    7 z    6 z    2 z    2 z    10 z | |||
|   ----- + --- - -- + ---- + ---- + ---- + ---- + ---- - ---- + ----- +  | |||
|     2      11    9     7      5      3     a      10      8      6 | |||
|    a      a     a     a      a      a            a       a      a | |||
|       4       4      5      5      5      5      5      6      6 | |||
|   32 z    18 z    2 z    4 z    3 z    2 z    5 z    2 z    7 z | |||
|   ----- + ----- + ---- - ---- - ---- - ---- - ---- + ---- - ---- -  | |||
|     4       2       9      7      5      3     a       8      6 | |||
|    a       a       a      a      a      a             a      a | |||
|       6       6      7      7      7    7      8      8      8    9    9 | |||
|   20 z    11 z    2 z    2 z    3 z    z    2 z    4 z    2 z    z    z | |||
|   ----- - ----- + ---- - ---- - ---- + -- + ---- + ---- + ---- + -- + -- | |||
|     4       2       7      5      3    a      6      4      2     5    3 | |||
|    a       a       a      a      a           a      a      a     a    a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 5]], Vassiliev[3][Knot[10, 5]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 7}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 5]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                       3 | |||
|    3      5     1      1     q    q   q       5        7        7  2 | |||
| 3 q  + 2 q  + ----- + ---- + -- + - + -- + 2 q  t + 2 q  t + 3 q  t  +  | |||
|                3  3      2    2   t   t | |||
|               q  t    q t    t | |||
|      9  2      9  3      11  3      11  4      13  4    13  5 | |||
|   2 q  t  + 2 q  t  + 3 q   t  + 2 q   t  + 2 q   t  + q   t  +  | |||
|      15  5    15  6    17  6    19  7 | |||
|   2 q   t  + q   t  + q   t  + q   t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:49, 27 August 2005
|  |  | 
|   | Visit 10 5's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 5's page at Knotilus! Visit 10 5's page at the original Knot Atlas! | 10 5 Quick Notes | 
Knot presentations
| Planar diagram presentation | X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X9,19,10,18 X15,7,16,6 X17,9,18,8 X19,11,20,10 X11,2,12,3 | 
| Gauss code | -1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3 | 
| Dowker-Thistlethwaite code | 4 12 14 16 18 2 20 6 8 10 | 
| Conway Notation | [6112] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 5"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 33, 4 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (4, 7) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
| 19 | 1 | -1 | |||||||||||||||||||
| 17 | 1 | 1 | |||||||||||||||||||
| 15 | 2 | 1 | -1 | ||||||||||||||||||
| 13 | 2 | 1 | 1 | ||||||||||||||||||
| 11 | 3 | 2 | -1 | ||||||||||||||||||
| 9 | 2 | 2 | 0 | ||||||||||||||||||
| 7 | 2 | 3 | 1 | ||||||||||||||||||
| 5 | 2 | 2 | 0 | ||||||||||||||||||
| 3 | 1 | 3 | 2 | ||||||||||||||||||
| 1 | 1 | 1 | 0 | ||||||||||||||||||
| -1 | 1 | 1 | |||||||||||||||||||
| -3 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 5]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 5]] | 
| Out[3]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14],X[7, 17, 8, 16], X[9, 19, 10, 18], X[15, 7, 16, 6], X[17, 9, 18, 8],X[19, 11, 20, 10], X[11, 2, 12, 3]] | 
| In[4]:= | GaussCode[Knot[10, 5]] | 
| Out[4]= | GaussCode[-1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3] | 
| In[5]:= | BR[Knot[10, 5]] | 
| Out[5]= | BR[3, {1, 1, 1, 1, 1, 1, -2, 1, -2, -2}] | 
| In[6]:= | alex = Alexander[Knot[10, 5]][t] | 
| Out[6]= | -4 3 5 5 2 3 4 | 
| In[7]:= | Conway[Knot[10, 5]][z] | 
| Out[7]= | 2 4 6 8 1 + 4 z + 7 z + 5 z + z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 5]} | 
| In[9]:= | {KnotDet[Knot[10, 5]], KnotSignature[Knot[10, 5]]} | 
| Out[9]= | {33, 4} | 
| In[10]:= | J=Jones[Knot[10, 5]][q] | 
| Out[10]= | 1 2 3 4 5 6 7 8 9 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 5]} | 
| In[12]:= | A2Invariant[Knot[10, 5]][q] | 
| Out[12]= | -2 4 6 8 10 12 14 22 26 -q + q + 2 q + q + 2 q - q + q - q - q | 
| In[13]:= | Kauffman[Knot[10, 5]][a, z] | 
| Out[13]= | 2 2 2 2 | 
| In[14]:= | {Vassiliev[2][Knot[10, 5]], Vassiliev[3][Knot[10, 5]]} | 
| Out[14]= | {0, 7} | 
| In[15]:= | Kh[Knot[10, 5]][q, t] | 
| Out[15]= | 33 5 1 1 q q q 5 7 7 2 | 


