9 14: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_14}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=14|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 14]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 14]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8], |
|||
X[17, 7, 18, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 14]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 14]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 14]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 2 |
|||
15 + -- - - - 9 t + 2 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 14]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 14]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 4 2 3 4 5 6 |
|||
6 - q + -- - - - 6 q + 6 q - 5 q + 3 q - 2 q + q |
|||
2 q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 14]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -4 2 2 4 8 10 12 16 18 |
|||
-q + q + q - q + -- + q + q + q - 2 q - q - q + q + |
|||
2 |
|||
q |
|||
20 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 14]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2 |
|||
1 - a - -- - a - --- - --- - --- + ---- + ----- + ---- - 2 a z + |
|||
4 5 3 a 6 4 2 |
|||
a a a a a a |
|||
3 3 3 4 4 4 |
|||
9 z 15 z 2 z 3 3 3 4 4 z 9 z 12 z |
|||
---- + ----- + ---- - 3 a z + a z - 4 z - ---- - ---- - ----- + |
|||
5 3 a 6 4 2 |
|||
a a a a a |
|||
5 5 5 6 6 7 |
|||
2 4 8 z 16 z 4 z 5 6 z 3 z 2 z |
|||
3 a z - ---- - ----- - ---- + 4 a z + 4 z + -- + ---- + ---- + |
|||
5 3 a 6 2 5 |
|||
a a a a a |
|||
7 7 8 8 |
|||
5 z 3 z z z |
|||
---- + ---- + -- + -- |
|||
3 a 4 2 |
|||
a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 14]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 2 2 3 |
|||
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t + |
|||
q 7 3 5 2 3 2 3 q t |
|||
q t q t q t q t |
|||
3 2 5 2 5 3 7 3 7 4 9 4 9 5 |
|||
3 q t + 3 q t + 2 q t + 3 q t + q t + 2 q t + q t + |
|||
11 5 13 6 |
|||
q t + q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:51, 27 August 2005
|
|
![]() |
Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 14's page at Knotilus! Visit 9 14's page at the original Knot Atlas! |
9 14 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
Gauss code | -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
Dowker-Thistlethwaite code | 4 10 12 16 14 2 18 8 6 |
Conway Notation | [41112] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 37, 0 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-2 q^5+3 q^4-5 q^3+6 q^2-6 q+6-4 q^{-1} +3 q^{-2} - q^{-3} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^8+q^6-q^4+2 q^2+ q^{-2} + q^{-4} + q^{-8} -2 q^{-10} - q^{-12} - q^{-16} + q^{-18} + q^{-20} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+8 q^{38}-10 q^{36}+11 q^{34}-8 q^{32}+2 q^{30}+4 q^{28}-10 q^{26}+16 q^{24}-16 q^{22}+14 q^{20}-8 q^{18}-q^{16}+11 q^{14}-15 q^{12}+17 q^{10}-12 q^8+3 q^6+6 q^4-10 q^2+10-2 q^{-2} -6 q^{-4} +15 q^{-6} -16 q^{-8} +9 q^{-10} +5 q^{-12} -19 q^{-14} +30 q^{-16} -28 q^{-18} +18 q^{-20} -16 q^{-24} +28 q^{-26} -30 q^{-28} +23 q^{-30} -10 q^{-32} -6 q^{-34} +16 q^{-36} -19 q^{-38} +15 q^{-40} -5 q^{-42} -7 q^{-44} +11 q^{-46} -13 q^{-48} +5 q^{-50} +5 q^{-52} -16 q^{-54} +21 q^{-56} -19 q^{-58} +6 q^{-60} +8 q^{-62} -20 q^{-64} +25 q^{-66} -21 q^{-68} +11 q^{-70} + q^{-72} -10 q^{-74} +16 q^{-76} -14 q^{-78} +10 q^{-80} -2 q^{-82} -2 q^{-84} +3 q^{-86} -4 q^{-88} +3 q^{-90} - q^{-92} + q^{-94} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^5-q^3+2 q+ q^{-5} -2 q^{-7} + q^{-9} - q^{-11} + q^{-13} } |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{39}+2 q^{37}+q^{35}-2 q^{33}-2 q^{31}+q^{29}+3 q^{27}-5 q^{25}+6 q^{21}-10 q^{17}+3 q^{15}+14 q^{13}-q^{11}-17 q^9+19 q^5+5 q^3-16 q-9 q^{-1} +10 q^{-3} +11 q^{-5} -2 q^{-7} -14 q^{-9} -3 q^{-11} +12 q^{-13} +10 q^{-15} -11 q^{-17} -13 q^{-19} +8 q^{-21} +16 q^{-23} -6 q^{-25} -16 q^{-27} +2 q^{-29} +18 q^{-31} +2 q^{-33} -17 q^{-35} -6 q^{-37} +16 q^{-39} +12 q^{-41} -13 q^{-43} -15 q^{-45} +5 q^{-47} +16 q^{-49} - q^{-51} -14 q^{-53} -4 q^{-55} +10 q^{-57} +7 q^{-59} -5 q^{-61} -6 q^{-63} +2 q^{-65} +4 q^{-67} -2 q^{-71} - q^{-73} + q^{-75} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{64}-2 q^{62}-q^{60}+2 q^{58}+5 q^{54}-4 q^{52}-2 q^{50}-6 q^{46}+11 q^{44}-2 q^{42}+3 q^{40}-21 q^{36}+4 q^{34}+6 q^{32}+26 q^{30}+10 q^{28}-43 q^{26}-22 q^{24}+4 q^{22}+56 q^{20}+40 q^{18}-48 q^{16}-56 q^{14}-24 q^{12}+60 q^{10}+70 q^8-16 q^6-54 q^4-55 q^2+21+63 q^{-2} +24 q^{-4} -14 q^{-6} -52 q^{-8} -26 q^{-10} +19 q^{-12} +41 q^{-14} +30 q^{-16} -25 q^{-18} -48 q^{-20} -17 q^{-22} +41 q^{-24} +47 q^{-26} -3 q^{-28} -53 q^{-30} -36 q^{-32} +39 q^{-34} +51 q^{-36} +8 q^{-38} -57 q^{-40} -48 q^{-42} +34 q^{-44} +54 q^{-46} +29 q^{-48} -47 q^{-50} -64 q^{-52} +8 q^{-54} +45 q^{-56} +56 q^{-58} -14 q^{-60} -63 q^{-62} -29 q^{-64} +8 q^{-66} +62 q^{-68} +30 q^{-70} -28 q^{-72} -41 q^{-74} -34 q^{-76} +32 q^{-78} +44 q^{-80} +15 q^{-82} -17 q^{-84} -47 q^{-86} -6 q^{-88} +21 q^{-90} +27 q^{-92} +12 q^{-94} -25 q^{-96} -17 q^{-98} -4 q^{-100} +12 q^{-102} +16 q^{-104} -4 q^{-106} -6 q^{-108} -6 q^{-110} +6 q^{-114} + q^{-116} -2 q^{-120} - q^{-122} + q^{-124} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{95}+2 q^{93}+q^{91}-2 q^{89}-3 q^{85}-2 q^{83}+3 q^{81}+7 q^{79}+3 q^{77}-q^{75}-8 q^{73}-12 q^{71}-4 q^{69}+13 q^{67}+26 q^{65}+10 q^{63}-15 q^{61}-36 q^{59}-38 q^{57}+9 q^{55}+66 q^{53}+62 q^{51}+q^{49}-80 q^{47}-112 q^{45}-33 q^{43}+111 q^{41}+167 q^{39}+71 q^{37}-114 q^{35}-226 q^{33}-137 q^{31}+104 q^{29}+277 q^{27}+209 q^{25}-60 q^{23}-298 q^{21}-276 q^{19}-8 q^{17}+276 q^{15}+324 q^{13}+90 q^{11}-216 q^9-326 q^7-162 q^5+119 q^3+282 q+208 q^{-1} -17 q^{-3} -202 q^{-5} -216 q^{-7} -66 q^{-9} +103 q^{-11} +184 q^{-13} +132 q^{-15} -13 q^{-17} -142 q^{-19} -158 q^{-21} -53 q^{-23} +90 q^{-25} +172 q^{-27} +104 q^{-29} -65 q^{-31} -169 q^{-33} -121 q^{-35} +46 q^{-37} +177 q^{-39} +134 q^{-41} -48 q^{-43} -189 q^{-45} -148 q^{-47} +46 q^{-49} +209 q^{-51} +168 q^{-53} -43 q^{-55} -223 q^{-57} -200 q^{-59} +18 q^{-61} +233 q^{-63} +234 q^{-65} +20 q^{-67} -213 q^{-69} -260 q^{-71} -80 q^{-73} +172 q^{-75} +272 q^{-77} +137 q^{-79} -105 q^{-81} -250 q^{-83} -190 q^{-85} +19 q^{-87} +202 q^{-89} +217 q^{-91} +59 q^{-93} -122 q^{-95} -199 q^{-97} -131 q^{-99} +32 q^{-101} +157 q^{-103} +159 q^{-105} +50 q^{-107} -79 q^{-109} -149 q^{-111} -112 q^{-113} +3 q^{-115} +104 q^{-117} +127 q^{-119} +61 q^{-121} -42 q^{-123} -107 q^{-125} -95 q^{-127} -16 q^{-129} +65 q^{-131} +93 q^{-133} +51 q^{-135} -18 q^{-137} -65 q^{-139} -62 q^{-141} -15 q^{-143} +34 q^{-145} +51 q^{-147} +27 q^{-149} -7 q^{-151} -29 q^{-153} -28 q^{-155} -6 q^{-157} +14 q^{-159} +17 q^{-161} +7 q^{-163} -2 q^{-165} -8 q^{-167} -8 q^{-169} +4 q^{-173} +3 q^{-175} + q^{-177} -2 q^{-181} - q^{-183} + q^{-185} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^8+q^6-q^4+2 q^2+ q^{-2} + q^{-4} + q^{-8} -2 q^{-10} - q^{-12} - q^{-16} + q^{-18} + q^{-20} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-4 q^{26}+8 q^{24}-12 q^{22}+18 q^{20}-28 q^{18}+34 q^{16}-38 q^{14}+43 q^{12}-48 q^{10}+50 q^8-44 q^6+46 q^4-32 q^2+22-24 q^{-4} +50 q^{-6} -80 q^{-8} +102 q^{-10} -118 q^{-12} +126 q^{-14} -126 q^{-16} +108 q^{-18} -91 q^{-20} +62 q^{-22} -30 q^{-24} +34 q^{-28} -50 q^{-30} +70 q^{-32} -76 q^{-34} +71 q^{-36} -62 q^{-38} +48 q^{-40} -36 q^{-42} +21 q^{-44} -12 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}-2 q^{22}+q^{20}+2 q^{18}-q^{16}-4 q^{14}+3 q^{12}+5 q^{10}-3 q^8-2 q^6+6 q^4+4 q^2-2-2 q^{-2} +2 q^{-4} - q^{-8} + q^{-10} -3 q^{-14} +2 q^{-16} + q^{-18} -5 q^{-20} -3 q^{-22} +2 q^{-24} +3 q^{-26} -2 q^{-28} +5 q^{-32} +4 q^{-34} -2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} -3 q^{-46} + q^{-50} + q^{-52} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-2 q^{20}-q^{18}+4 q^{16}-3 q^{14}-2 q^{12}+6 q^{10}-2 q^8-4 q^6+7 q^4+q^2-1+5 q^{-2} +2 q^{-4} -2 q^{-6} -3 q^{-8} -6 q^{-14} +2 q^{-16} +5 q^{-18} -4 q^{-20} +2 q^{-22} +4 q^{-24} -4 q^{-26} +2 q^{-30} -3 q^{-32} + q^{-34} + q^{-36} - q^{-38} + q^{-40} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+q^{11}+q^7-q^5+2 q^3+ q^{-1} + q^{-3} + q^{-5} + q^{-7} + q^{-11} -2 q^{-13} - q^{-15} -2 q^{-17} - q^{-21} + q^{-23} + q^{-25} + q^{-27} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{32}-2 q^{30}+q^{28}+4 q^{26}+q^{24}-4 q^{22}-4 q^{20}+2 q^{18}+6 q^{16}+2 q^{14}-5 q^{12}-4 q^{10}+3 q^8+7 q^6-4 q^2+6 q^{-2} +3 q^{-4} -3 q^{-6} -4 q^{-8} +2 q^{-10} +3 q^{-12} -2 q^{-14} -5 q^{-16} +3 q^{-20} - q^{-22} -5 q^{-24} - q^{-26} +6 q^{-28} +4 q^{-30} -3 q^{-32} -6 q^{-34} +2 q^{-36} +7 q^{-38} +3 q^{-40} -5 q^{-42} -5 q^{-44} +2 q^{-46} +5 q^{-48} -4 q^{-52} -2 q^{-54} +2 q^{-56} +2 q^{-58} - q^{-60} - q^{-62} + q^{-66} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+8 q^{38}-10 q^{36}+11 q^{34}-8 q^{32}+2 q^{30}+4 q^{28}-10 q^{26}+16 q^{24}-16 q^{22}+14 q^{20}-8 q^{18}-q^{16}+11 q^{14}-15 q^{12}+17 q^{10}-12 q^8+3 q^6+6 q^4-10 q^2+10-2 q^{-2} -6 q^{-4} +15 q^{-6} -16 q^{-8} +9 q^{-10} +5 q^{-12} -19 q^{-14} +30 q^{-16} -28 q^{-18} +18 q^{-20} -16 q^{-24} +28 q^{-26} -30 q^{-28} +23 q^{-30} -10 q^{-32} -6 q^{-34} +16 q^{-36} -19 q^{-38} +15 q^{-40} -5 q^{-42} -7 q^{-44} +11 q^{-46} -13 q^{-48} +5 q^{-50} +5 q^{-52} -16 q^{-54} +21 q^{-56} -19 q^{-58} +6 q^{-60} +8 q^{-62} -20 q^{-64} +25 q^{-66} -21 q^{-68} +11 q^{-70} + q^{-72} -10 q^{-74} +16 q^{-76} -14 q^{-78} +10 q^{-80} -2 q^{-82} -2 q^{-84} +3 q^{-86} -4 q^{-88} +3 q^{-90} - q^{-92} + q^{-94} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-2 q^5+3 q^4-5 q^3+6 q^2-6 q+6-4 q^{-1} +3 q^{-2} - q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1} |
Vassiliev invariants
V2 and V3: | (-1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | χ | |||||||||
13 | 1 | 1 | ||||||||||||||||||
11 | 1 | -1 | ||||||||||||||||||
9 | 2 | 1 | 1 | |||||||||||||||||
7 | 3 | 1 | -2 | |||||||||||||||||
5 | 3 | 2 | 1 | |||||||||||||||||
3 | 3 | 3 | 0 | |||||||||||||||||
1 | 3 | 3 | 0 | |||||||||||||||||
-1 | 2 | 4 | 2 | |||||||||||||||||
-3 | 1 | 2 | -1 | |||||||||||||||||
-5 | 2 | 2 | ||||||||||||||||||
-7 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 14]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 14]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8],X[17, 7, 18, 6]] |
In[4]:= | GaussCode[Knot[9, 14]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5] |
In[5]:= | BR[Knot[9, 14]] |
Out[5]= | BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[9, 14]][t] |
Out[6]= | 2 9 2 |
In[7]:= | Conway[Knot[9, 14]][z] |
Out[7]= | 2 4 1 - z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 14]} |
In[9]:= | {KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]} |
Out[9]= | {37, 0} |
In[10]:= | J=Jones[Knot[9, 14]][q] |
Out[10]= | -3 3 4 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 14], Knot[11, NonAlternating, 53]} |
In[12]:= | A2Invariant[Knot[9, 14]][q] |
Out[12]= | -10 -8 -6 -4 2 2 4 8 10 12 16 18 |
In[13]:= | Kauffman[Knot[9, 14]][a, z] |
Out[13]= | 2 2 2-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2 |
In[14]:= | {Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[9, 14]][q, t] |
Out[15]= | 4 1 2 1 2 2 3 |