7 5: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=7|k=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,5,-4,6,-7,2,-6,3,-5,4/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=7|k=5|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,5,-4,6,-7,2,-6,3,-5,4/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
Line 45: Line 38:
<tr align=center><td>-17</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 112: Line 104:
q t q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:10, 28 August 2005

7 4.gif

7_4

7 6.gif

7_6

7 5.gif Visit 7 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 5's page at Knotilus!

Visit 7 5's page at the original Knot Atlas!

7 5 Quick Notes


7 5 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6
Conway Notation [322]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [math]\displaystyle{ \text{$\$$Failed} }[/math]
Hyperbolic Volume 6.44354
A-Polynomial See Data:7 5/A-polynomial

[edit Notes for 7 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ \textrm{ConcordanceGenus}(\textrm{Knot}(7,5)) }[/math]
Rasmussen s-Invariant -4

[edit Notes for 7 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 17, -4 }
Jones polynomial [math]\displaystyle{ - q^{-9} +2 q^{-8} -3 q^{-7} +3 q^{-6} -3 q^{-5} +3 q^{-4} - q^{-3} + q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^8 \left(-z^2\right)-a^8+a^6 z^4+2 a^6 z^2+a^4 z^4+3 a^4 z^2+2 a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^{11} z^3-a^{11} z+2 a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-2 a^9 z^3+a^9 z+a^8 z^6+a^8 z^2-a^8+3 a^7 z^5-4 a^7 z^3+a^7 z+a^6 z^6-a^6 z^4+a^5 z^5-a^5 z^3-a^5 z+a^4 z^4-3 a^4 z^2+2 a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{28}-q^{22}-q^{18}+q^{16}+q^{14}+q^{12}+2 q^{10}+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{148}-q^{146}+2 q^{144}-2 q^{142}+q^{138}-2 q^{136}+5 q^{134}-5 q^{132}+4 q^{130}-2 q^{128}-3 q^{126}+4 q^{124}-6 q^{122}+5 q^{120}-3 q^{118}-q^{116}+3 q^{114}-3 q^{112}+q^{110}+2 q^{108}-5 q^{106}+4 q^{104}-3 q^{102}-2 q^{100}+5 q^{98}-7 q^{96}+8 q^{94}-7 q^{92}+2 q^{90}+2 q^{88}-6 q^{86}+6 q^{84}-7 q^{82}+4 q^{80}-2 q^{76}+3 q^{74}-3 q^{72}+2 q^{70}+3 q^{68}-5 q^{66}+3 q^{64}-2 q^{60}+7 q^{58}-5 q^{56}+5 q^{54}-q^{52}+4 q^{48}-4 q^{46}+5 q^{44}-q^{42}+q^{40}+q^{38}-q^{36}+2 q^{34}+q^{30} }[/math]

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{968}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ -1024 }[/math] [math]\displaystyle{ -\frac{5440}{3} }[/math] [math]\displaystyle{ -\frac{928}{3} }[/math] [math]\displaystyle{ -224 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2048 }[/math] [math]\displaystyle{ \frac{15488}{3} }[/math] [math]\displaystyle{ \frac{2176}{3} }[/math] [math]\displaystyle{ \frac{156422}{15} }[/math] [math]\displaystyle{ \frac{5912}{15} }[/math] [math]\displaystyle{ \frac{170888}{45} }[/math] [math]\displaystyle{ \frac{730}{9} }[/math] [math]\displaystyle{ \frac{7142}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 7 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-3       11
-5      110
-7     2  2
-9    11  0
-11   22   0
-13  11    0
-15 12     -1
-17 1      1
-191       -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[7, 5]]
Out[2]=  
7
In[3]:=
PD[Knot[7, 5]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], 
  X[13, 6, 14, 7], X[11, 8, 12, 9], X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[7, 5]]
Out[4]=  
GaussCode[-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4]
In[5]:=
BR[Knot[7, 5]]
Out[5]=  
BR[3, {-1, -1, -1, -1, -2, 1, -2, -2}]
In[6]:=
alex = Alexander[Knot[7, 5]][t]
Out[6]=  
    2    4            2

5 + -- - - - 4 t + 2 t

    2   t
t
In[7]:=
Conway[Knot[7, 5]][z]
Out[7]=  
       2      4
1 + 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 5], Knot[10, 130]}
In[9]:=
{KnotDet[Knot[7, 5]], KnotSignature[Knot[7, 5]]}
Out[9]=  
{17, -4}
In[10]:=
J=Jones[Knot[7, 5]][q]
Out[10]=  
  -9   2    3    3    3    3     -3    -2

-q + -- - -- + -- - -- + -- - q + q

       8    7    6    5    4
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[7, 5]}
In[12]:=
A2Invariant[Knot[7, 5]][q]
Out[12]=  
  -28    -22    -18    -16    -14    -12    2     -6

-q - q - q + q + q + q + --- + q

                                           10
q
In[13]:=
Kauffman[Knot[7, 5]][a, z]
Out[13]=  
   4    8    5      7      9      11        4  2    8  2      10  2

2 a - a - a z + a z + a z - a z - 3 a z + a z - 2 a z -

  5  3      7  3      9  3    11  3    4  4    6  4      10  4
 a  z  - 4 a  z  - 2 a  z  + a   z  + a  z  - a  z  + 2 a   z  + 

  5  5      7  5      9  5    6  6    8  6
a z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[7, 5]], Vassiliev[3][Knot[7, 5]]}
Out[14]=  
{0, -8}
In[15]:=
Kh[Knot[7, 5]][q, t]
Out[15]=  
 -5    -3     1        1        1        2        1        1

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            19  7    17  6    15  6    15  5    13  5    13  4
           q   t    q   t    q   t    q   t    q   t    q   t

   2        2        1       1       2      1
 ------ + ------ + ----- + ----- + ----- + ----
  11  4    11  3    9  3    9  2    7  2    5
q t q t q t q t q t q t