8 21: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=8|k=21|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,3,-7,-8,2,-5,6,7,-3,-4,5,-6,4/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=8|k=21|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,3,-7,-8,2,-5,6,7,-3,-4,5,-6,4/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
Line 44: Line 37:
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 110: Line 102:
q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:14, 28 August 2005

8 20.gif

8_20

9 1.gif

9_1

8 21.gif Visit 8 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 21's page at Knotilus!

Visit 8 21's page at the original Knot Atlas!

8 21 Quick Notes


8 21 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283
Gauss code -1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 -12 2 14 -6 16 10
Conway Notation [21,21,2-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][1]
Hyperbolic Volume 6.78371
A-Polynomial See Data:8 21/A-polynomial

[edit Notes for 8 21's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 21's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 15, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10χ
-1      22
-3     110
-5    21 1
-7   11  0
-9  12   -1
-11 11    0
-13 1     -1
-151      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 21]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 21]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1], 
  X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[8, 21]]
Out[4]=  
GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4]
In[5]:=
BR[Knot[8, 21]]
Out[5]=  
BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}]
In[6]:=
alex = Alexander[Knot[8, 21]][t]
Out[6]=  
      -2   4          2

-5 - t + - + 4 t - t

t
In[7]:=
Conway[Knot[8, 21]][z]
Out[7]=  
     4
1 - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 21], Knot[10, 136]}
In[9]:=
{KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]}
Out[9]=  
{15, -2}
In[10]:=
J=Jones[Knot[8, 21]][q]
Out[10]=  
 -7   2    2    3    3    2    2

q - -- + -- - -- + -- - -- + -

      6    5    4    3    2   q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 21]}
In[12]:=
A2Invariant[Knot[8, 21]][q]
Out[12]=  
 -22    2     -12    -10    -8   2     -4   2

q - --- - q - q + q + -- + q + --

       14                        6          2
q q q
In[13]:=
Kauffman[Knot[8, 21]][a, z]
Out[13]=  
    2      4    6      3        5        7        2  2      4  2

-3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z -

    8  2    3  3      5  3      7  3      4  4    6  4    8  4
 2 a  z  - a  z  - 6 a  z  - 5 a  z  - 2 a  z  - a  z  + a  z  + 

  3  5      5  5      7  5    4  6    6  6
a z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[8, 21]][q, t]
Out[15]=  
 -3   2     1        1        1        1        1       2       1

q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

     q    15  6    13  5    11  5    11  4    9  4    9  3    7  3
         q   t    q   t    q   t    q   t    q  t    q  t    q  t

   1       2      1      1
 ----- + ----- + ---- + ----
  7  2    5  2    5      3
q t q t q t q t