9 10: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
Line 47: | Line 40: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 129: | Line 121: | ||
q t + q t</nowiki></pre></td></tr> |
q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 19:16, 28 August 2005
|
|
![]() |
Visit 9 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 10's page at Knotilus! Visit 9 10's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13 |
Gauss code | 1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3 |
Dowker-Thistlethwaite code | 8 12 14 16 18 2 6 4 10 |
Conway Notation | [333] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-8 t+9-8 t^{-1} +4 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+8 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 33, 4 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^{10}-3 q^9+5 q^8-5 q^7+6 q^6-5 q^5+4 q^4-2 q^3+q^2} |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} +2 z^5 a^{-5} -3 z^5 a^{-7} -7 z^5 a^{-9} -z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +9 z^4 a^{-10} -2 z^4 a^{-12} -3 z^3 a^{-5} +3 z^3 a^{-7} +9 z^3 a^{-9} -z^3 a^{-11} -4 z^3 a^{-13} -2 z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -11 z^2 a^{-10} -4 z a^{-9} +4 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10} } |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} + q^{-10} +2 q^{-16} +2 q^{-20} + q^{-22} + q^{-24} + q^{-26} -2 q^{-28} - q^{-30} - q^{-32} - q^{-34} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -9 q^{-46} +11 q^{-48} -8 q^{-50} +3 q^{-52} +5 q^{-54} -13 q^{-56} +21 q^{-58} -19 q^{-60} +12 q^{-62} -2 q^{-64} -10 q^{-66} +18 q^{-68} -17 q^{-70} +14 q^{-72} -2 q^{-74} -7 q^{-76} +13 q^{-78} -9 q^{-80} - q^{-82} +12 q^{-84} -19 q^{-86} +18 q^{-88} -9 q^{-90} -4 q^{-92} +21 q^{-94} -28 q^{-96} +31 q^{-98} -20 q^{-100} +6 q^{-102} +11 q^{-104} -21 q^{-106} +26 q^{-108} -18 q^{-110} +12 q^{-112} +2 q^{-114} -10 q^{-116} +15 q^{-118} -10 q^{-120} -2 q^{-122} +9 q^{-124} -16 q^{-126} +10 q^{-128} -3 q^{-130} -12 q^{-132} +18 q^{-134} -20 q^{-136} +15 q^{-138} -10 q^{-140} -9 q^{-142} +13 q^{-144} -16 q^{-146} +13 q^{-148} -9 q^{-150} +2 q^{-152} +3 q^{-154} -4 q^{-156} +6 q^{-158} -6 q^{-160} +4 q^{-162} - q^{-164} + q^{-168} -2 q^{-170} +2 q^{-172} + q^{-176} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-5} +2 q^{-7} - q^{-9} + q^{-11} + q^{-13} +2 q^{-17} -2 q^{-19} - q^{-23} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} +4 q^{-12} -2 q^{-14} -3 q^{-16} +7 q^{-18} - q^{-20} -6 q^{-22} +7 q^{-24} + q^{-26} -5 q^{-28} +2 q^{-30} +2 q^{-32} -3 q^{-36} +4 q^{-38} +3 q^{-40} -7 q^{-42} + q^{-44} +5 q^{-46} -7 q^{-48} -2 q^{-50} +4 q^{-52} -3 q^{-54} - q^{-56} +2 q^{-58} + q^{-64} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-11} +2 q^{-15} +2 q^{-17} -2 q^{-19} -3 q^{-21} +4 q^{-23} +7 q^{-25} -4 q^{-27} -10 q^{-29} +2 q^{-31} +17 q^{-33} +2 q^{-35} -20 q^{-37} -6 q^{-39} +21 q^{-41} +12 q^{-43} -20 q^{-45} -14 q^{-47} +17 q^{-49} +15 q^{-51} -9 q^{-53} -14 q^{-55} +3 q^{-57} +9 q^{-59} +3 q^{-61} -9 q^{-63} -9 q^{-65} +6 q^{-67} +15 q^{-69} -2 q^{-71} -20 q^{-73} + q^{-75} +20 q^{-77} +3 q^{-79} -23 q^{-81} -9 q^{-83} +16 q^{-85} +13 q^{-87} -16 q^{-89} -13 q^{-91} +8 q^{-93} +14 q^{-95} -2 q^{-97} -10 q^{-99} + q^{-101} +7 q^{-103} +2 q^{-105} -3 q^{-107} + q^{-111} + q^{-113} - q^{-115} - q^{-123} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-18} +2 q^{-22} -3 q^{-24} - q^{-26} +5 q^{-28} +5 q^{-32} -8 q^{-34} -6 q^{-36} +9 q^{-38} +6 q^{-40} +14 q^{-42} -17 q^{-44} -24 q^{-46} + q^{-48} +19 q^{-50} +47 q^{-52} -10 q^{-54} -51 q^{-56} -33 q^{-58} +14 q^{-60} +83 q^{-62} +23 q^{-64} -54 q^{-66} -70 q^{-68} -17 q^{-70} +90 q^{-72} +55 q^{-74} -28 q^{-76} -73 q^{-78} -42 q^{-80} +56 q^{-82} +55 q^{-84} +6 q^{-86} -43 q^{-88} -44 q^{-90} +11 q^{-92} +35 q^{-94} +26 q^{-96} -10 q^{-98} -34 q^{-100} -28 q^{-102} +15 q^{-104} +44 q^{-106} +17 q^{-108} -28 q^{-110} -58 q^{-112} +60 q^{-116} +42 q^{-118} -19 q^{-120} -84 q^{-122} -19 q^{-124} +59 q^{-126} +62 q^{-128} +5 q^{-130} -86 q^{-132} -45 q^{-134} +27 q^{-136} +66 q^{-138} +43 q^{-140} -53 q^{-142} -52 q^{-144} -10 q^{-146} +38 q^{-148} +55 q^{-150} -8 q^{-152} -29 q^{-154} -28 q^{-156} +2 q^{-158} +32 q^{-160} +9 q^{-162} -4 q^{-164} -16 q^{-166} -9 q^{-168} +8 q^{-170} +3 q^{-172} +4 q^{-174} -3 q^{-176} -4 q^{-178} + q^{-180} -2 q^{-182} +2 q^{-184} - q^{-188} + q^{-190} - q^{-192} + q^{-200} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} - q^{-17} +2 q^{-21} + q^{-27} - q^{-29} - q^{-31} +3 q^{-33} +3 q^{-35} -2 q^{-37} - q^{-41} +4 q^{-45} +6 q^{-47} - q^{-49} -9 q^{-51} -11 q^{-53} -4 q^{-55} +14 q^{-57} +26 q^{-59} +22 q^{-61} -9 q^{-63} -49 q^{-65} -52 q^{-67} -8 q^{-69} +62 q^{-71} +99 q^{-73} +56 q^{-75} -60 q^{-77} -153 q^{-79} -118 q^{-81} +31 q^{-83} +186 q^{-85} +199 q^{-87} +30 q^{-89} -197 q^{-91} -273 q^{-93} -104 q^{-95} +171 q^{-97} +314 q^{-99} +183 q^{-101} -115 q^{-103} -323 q^{-105} -243 q^{-107} +53 q^{-109} +287 q^{-111} +266 q^{-113} +15 q^{-115} -227 q^{-117} -259 q^{-119} -71 q^{-121} +158 q^{-123} +220 q^{-125} +96 q^{-127} -80 q^{-129} -173 q^{-131} -115 q^{-133} +26 q^{-135} +121 q^{-137} +115 q^{-139} +26 q^{-141} -78 q^{-143} -122 q^{-145} -65 q^{-147} +45 q^{-149} +124 q^{-151} +100 q^{-153} -22 q^{-155} -140 q^{-157} -139 q^{-159} +5 q^{-161} +164 q^{-163} +177 q^{-165} +17 q^{-167} -179 q^{-169} -224 q^{-171} -48 q^{-173} +193 q^{-175} +264 q^{-177} +89 q^{-179} -176 q^{-181} -302 q^{-183} -140 q^{-185} +144 q^{-187} +300 q^{-189} +204 q^{-191} -76 q^{-193} -287 q^{-195} -239 q^{-197} +2 q^{-199} +221 q^{-201} +257 q^{-203} +86 q^{-205} -151 q^{-207} -235 q^{-209} -128 q^{-211} +58 q^{-213} +184 q^{-215} +157 q^{-217} +16 q^{-219} -118 q^{-221} -140 q^{-223} -62 q^{-225} +48 q^{-227} +102 q^{-229} +76 q^{-231} -3 q^{-233} -64 q^{-235} -64 q^{-237} -23 q^{-239} +22 q^{-241} +44 q^{-243} +25 q^{-245} -3 q^{-247} -20 q^{-249} -20 q^{-251} -7 q^{-253} +9 q^{-255} +11 q^{-257} +6 q^{-259} +2 q^{-261} -5 q^{-263} -6 q^{-265} + q^{-269} + q^{-271} +4 q^{-273} -2 q^{-277} - q^{-283} + q^{-285} + q^{-287} - q^{-295} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} -2 q^{-14} +4 q^{-16} -8 q^{-18} +17 q^{-20} -22 q^{-22} +32 q^{-24} -42 q^{-26} +58 q^{-28} -56 q^{-30} +60 q^{-32} -54 q^{-34} +43 q^{-36} -16 q^{-38} -12 q^{-40} +44 q^{-42} -69 q^{-44} +100 q^{-46} -114 q^{-48} +118 q^{-50} -119 q^{-52} +94 q^{-54} -80 q^{-56} +46 q^{-58} -24 q^{-60} -8 q^{-62} +36 q^{-64} -46 q^{-66} +56 q^{-68} -56 q^{-70} +56 q^{-72} -44 q^{-74} +30 q^{-76} -28 q^{-78} +16 q^{-80} -12 q^{-82} +8 q^{-84} -4 q^{-86} +4 q^{-88} + q^{-92} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} - q^{-16} +3 q^{-18} +2 q^{-20} -3 q^{-22} - q^{-24} +4 q^{-26} +3 q^{-28} -2 q^{-30} + q^{-32} +4 q^{-34} - q^{-36} -2 q^{-38} +2 q^{-40} + q^{-42} +4 q^{-46} +4 q^{-48} +2 q^{-54} -6 q^{-58} - q^{-60} -3 q^{-64} -6 q^{-66} -3 q^{-68} - q^{-72} - q^{-74} +2 q^{-78} + q^{-80} +2 q^{-82} + q^{-84} + q^{-86} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-18} -3 q^{-20} + q^{-22} +6 q^{-24} -4 q^{-26} + q^{-28} +7 q^{-30} -2 q^{-32} + q^{-34} +6 q^{-36} + q^{-38} +2 q^{-44} -2 q^{-46} -4 q^{-48} +3 q^{-50} -8 q^{-54} +2 q^{-56} - q^{-58} -7 q^{-60} + q^{-62} - q^{-66} +2 q^{-68} +2 q^{-70} + q^{-74} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-11} + q^{-13} - q^{-15} + q^{-17} +2 q^{-21} + q^{-23} + q^{-25} +2 q^{-27} + q^{-29} +2 q^{-31} + q^{-35} -2 q^{-37} - q^{-39} -2 q^{-41} - q^{-43} - q^{-45} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-20} + q^{-24} - q^{-26} - q^{-28} +3 q^{-30} +2 q^{-32} -2 q^{-34} + q^{-36} +5 q^{-38} +2 q^{-40} -2 q^{-42} +4 q^{-44} +8 q^{-46} + q^{-50} +6 q^{-52} +3 q^{-54} - q^{-56} +4 q^{-58} +5 q^{-60} - q^{-64} +2 q^{-66} -4 q^{-68} -11 q^{-70} -7 q^{-72} -5 q^{-74} -10 q^{-76} -8 q^{-78} +2 q^{-82} + q^{-84} +2 q^{-86} +5 q^{-88} +3 q^{-90} + q^{-92} + q^{-94} + q^{-96} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} + q^{-16} - q^{-18} + q^{-22} +2 q^{-26} + q^{-28} +2 q^{-30} + q^{-32} +2 q^{-34} + q^{-36} +2 q^{-38} + q^{-40} + q^{-44} -2 q^{-46} - q^{-48} -2 q^{-50} -2 q^{-52} - q^{-54} - q^{-56} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-14} +2 q^{-16} -4 q^{-18} +5 q^{-20} -5 q^{-22} +6 q^{-24} -4 q^{-26} +5 q^{-28} - q^{-30} +5 q^{-34} -6 q^{-36} +9 q^{-38} -10 q^{-40} +10 q^{-42} -10 q^{-44} +8 q^{-46} -6 q^{-48} +3 q^{-50} -2 q^{-54} +4 q^{-56} -5 q^{-58} +5 q^{-60} -5 q^{-62} +4 q^{-64} -3 q^{-66} +2 q^{-68} -2 q^{-70} - q^{-74} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-22} - q^{-24} + q^{-26} +3 q^{-28} -4 q^{-32} -2 q^{-34} +4 q^{-36} +6 q^{-38} - q^{-40} -5 q^{-42} -2 q^{-44} +6 q^{-46} +5 q^{-48} -2 q^{-50} -4 q^{-52} +3 q^{-54} +5 q^{-56} + q^{-58} -3 q^{-60} +4 q^{-64} +2 q^{-66} -3 q^{-68} -3 q^{-70} +2 q^{-72} +3 q^{-74} -2 q^{-76} -4 q^{-78} + q^{-80} +5 q^{-82} -6 q^{-86} -5 q^{-88} +3 q^{-90} +4 q^{-92} -3 q^{-94} -7 q^{-96} -3 q^{-98} +3 q^{-100} +2 q^{-102} - q^{-104} -2 q^{-106} +2 q^{-110} +2 q^{-112} + q^{-120} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -9 q^{-46} +11 q^{-48} -8 q^{-50} +3 q^{-52} +5 q^{-54} -13 q^{-56} +21 q^{-58} -19 q^{-60} +12 q^{-62} -2 q^{-64} -10 q^{-66} +18 q^{-68} -17 q^{-70} +14 q^{-72} -2 q^{-74} -7 q^{-76} +13 q^{-78} -9 q^{-80} - q^{-82} +12 q^{-84} -19 q^{-86} +18 q^{-88} -9 q^{-90} -4 q^{-92} +21 q^{-94} -28 q^{-96} +31 q^{-98} -20 q^{-100} +6 q^{-102} +11 q^{-104} -21 q^{-106} +26 q^{-108} -18 q^{-110} +12 q^{-112} +2 q^{-114} -10 q^{-116} +15 q^{-118} -10 q^{-120} -2 q^{-122} +9 q^{-124} -16 q^{-126} +10 q^{-128} -3 q^{-130} -12 q^{-132} +18 q^{-134} -20 q^{-136} +15 q^{-138} -10 q^{-140} -9 q^{-142} +13 q^{-144} -16 q^{-146} +13 q^{-148} -9 q^{-150} +2 q^{-152} +3 q^{-154} -4 q^{-156} +6 q^{-158} -6 q^{-160} +4 q^{-162} - q^{-164} + q^{-168} -2 q^{-170} +2 q^{-172} + q^{-176} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 10"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-8 t+9-8 t^{-1} +4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+8 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^{10}-3 q^9+5 q^8-5 q^7+6 q^6-5 q^5+4 q^4-2 q^3+q^2} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} +2 z^5 a^{-5} -3 z^5 a^{-7} -7 z^5 a^{-9} -z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +9 z^4 a^{-10} -2 z^4 a^{-12} -3 z^3 a^{-5} +3 z^3 a^{-7} +9 z^3 a^{-9} -z^3 a^{-11} -4 z^3 a^{-13} -2 z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -11 z^2 a^{-10} -4 z a^{-9} +4 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10} } |
Vassiliev invariants
V2 and V3: | (8, 22) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 9 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 10]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 10]] |
Out[3]= | PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17],X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 16, 5, 15], X[14, 6, 15, 5],X[6, 14, 7, 13]] |
In[4]:= | GaussCode[Knot[9, 10]] |
Out[4]= | GaussCode[1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3] |
In[5]:= | BR[Knot[9, 10]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, 2, 2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[9, 10]][t] |
Out[6]= | 4 8 2 |
In[7]:= | Conway[Knot[9, 10]][z] |
Out[7]= | 2 4 1 + 8 z + 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 10]} |
In[9]:= | {KnotDet[Knot[9, 10]], KnotSignature[Knot[9, 10]]} |
Out[9]= | {33, 4} |
In[10]:= | J=Jones[Knot[9, 10]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 11 q - 2 q + 4 q - 5 q + 6 q - 5 q + 5 q - 3 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 10]} |
In[12]:= | A2Invariant[Knot[9, 10]][q] |
Out[12]= | 6 8 10 16 20 22 24 26 28 30 32 |
In[13]:= | Kauffman[Knot[9, 10]][a, z] |
Out[13]= | 2 2 2 2 3 32 -8 2 4 z 4 z 11 z 2 z 7 z 2 z 4 z z |
In[14]:= | {Vassiliev[2][Knot[9, 10]], Vassiliev[3][Knot[9, 10]]} |
Out[14]= | {0, 22} |
In[15]:= | Kh[Knot[9, 10]][q, t] |
Out[15]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 |