9 33: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=33|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,6,-7,2,-3,4,-9,8,-2,5,-6,9,-8,7,-5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=33|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,6,-7,2,-3,4,-9,8,-2,5,-6,9,-8,7,-5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 133: Line 125:
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:12, 28 August 2005

9 32.gif

9_32

9 34.gif

9_34

9 33.gif Visit 9 33's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 33's page at Knotilus!

Visit 9 33's page at the original Knot Atlas!

9 33 Quick Notes


9 33 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15
Gauss code 1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5
Dowker-Thistlethwaite code 4 8 14 12 2 16 18 10 6
Conway Notation [.21.2]

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 13.2805
A-Polynomial See Data:9 33/A-polynomial

[edit Notes for 9 33's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 33's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 61, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       41 3
3      53  -2
1     64   2
-1    56    1
-3   45     -1
-5  25      3
-7 14       -3
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 33]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 33]]
Out[3]=  
PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 X[18, 13, 1, 14], X[14, 5, 15, 6], X[6, 17, 7, 18], 

X[16, 12, 17, 11], X[10, 16, 11, 15]]
In[4]:=
GaussCode[Knot[9, 33]]
Out[4]=  
GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5]
In[5]:=
BR[Knot[9, 33]]
Out[5]=  
BR[4, {-1, 2, -1, 2, 2, -1, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 33]][t]
Out[6]=  
      -3   6    14             2    3

19 - t + -- - -- - 14 t + 6 t - t

           2   t
t
In[7]:=
Conway[Knot[9, 33]][z]
Out[7]=  
     2    6
1 + z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 33], Knot[11, NonAlternating, 55]}
In[9]:=
{KnotDet[Knot[9, 33]], KnotSignature[Knot[9, 33]]}
Out[9]=  
{61, 0}
In[10]:=
J=Jones[Knot[9, 33]][q]
Out[10]=  
      -5   3    6    9    10            2      3    4

11 - q + -- - -- + -- - -- - 9 q + 7 q - 4 q + q

           4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 33]}
In[12]:=
A2Invariant[Knot[9, 33]][q]
Out[12]=  
      -16    -12    2    2    3       2      4    8      10    12

-1 - q + q - --- + -- + -- + 3 q - 2 q + q - 2 q + q

                   10    8    2
q q q
In[13]:=
Kauffman[Knot[9, 33]][a, z]
Out[13]=  
                                     2                           3
   2    4    3      5        2   3 z        2  2      4  2   3 z

-2 a - a + a z + a z + 9 z + ---- + 10 a z + 4 a z - ---- -

                                   2                           3
                                  a                           a

  3                                       4      4
 z         3    3  3      5  3       4   z    9 z        2  4
 -- + 5 a z  + a  z  - 2 a  z  - 20 z  + -- - ---- - 16 a  z  - 
 a                                        4     2
                                         a     a

              5      5                                         6
    4  4   4 z    5 z          5      3  5    5  5      6   7 z
 6 a  z  + ---- - ---- - 16 a z  - 6 a  z  + a  z  + 9 z  + ---- + 
             3     a                                          2
            a                                                a

                        7
    2  6      4  6   6 z          7      3  7      8      2  8
 5 a  z  + 3 a  z  + ---- + 10 a z  + 4 a  z  + 2 z  + 2 a  z
a
In[14]:=
{Vassiliev[2][Knot[9, 33]], Vassiliev[3][Knot[9, 33]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 33]][q, t]
Out[15]=  
6           1        2       1       4       2       5       4

- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  5      5               3        3  2      5  2    5  3      7  3
 ---- + --- + 4 q t + 5 q  t + 3 q  t  + 4 q  t  + q  t  + 3 q  t  + 
  3     q t
 q  t

  9  4
q t