10 139: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 16: Line 16:


{{Knot Presentations}}
{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>

[[Invariants from Braid Theory|Length]] is 10, width is 3.

[[Invariants from Braid Theory|Braid index]] is 3.
</td>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{3D Invariants}}
{{4D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


Line 40: Line 70:
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table>}}

{{Display Coloured Jones|J2=<math>q^{33}-q^{32}-q^{31}+2 q^{30}+q^{29}-3 q^{28}+q^{27}+2 q^{26}-4 q^{25}+q^{24}+2 q^{23}-3 q^{22}+3 q^{20}-q^{19}-2 q^{18}+2 q^{17}-2 q^{15}+q^{14}+q^{11}+q^8</math>|J3=<math>-q^{63}+q^{62}+q^{61}-2 q^{59}-2 q^{58}+2 q^{57}+4 q^{56}-q^{55}-5 q^{54}+7 q^{52}+q^{51}-8 q^{50}-q^{49}+8 q^{48}+q^{47}-8 q^{46}-q^{45}+8 q^{44}+q^{43}-7 q^{42}-2 q^{41}+7 q^{40}+q^{39}-5 q^{38}-3 q^{37}+3 q^{36}+3 q^{35}-3 q^{34}-q^{33}+2 q^{31}-q^{30}+q^{29}-2 q^{26}+q^{25}+q^{24}-2 q^{22}+q^{20}+q^{16}+q^{12}</math>|J4=<math>q^{102}-q^{101}-q^{100}+3 q^{97}+q^{96}-q^{95}-3 q^{94}-5 q^{93}+3 q^{92}+6 q^{91}+3 q^{90}-2 q^{89}-9 q^{88}-4 q^{87}+7 q^{86}+9 q^{85}+q^{84}-11 q^{83}-9 q^{82}+8 q^{81}+11 q^{80}+2 q^{79}-11 q^{78}-10 q^{77}+8 q^{76}+12 q^{75}+2 q^{74}-11 q^{73}-10 q^{72}+8 q^{71}+11 q^{70}+2 q^{69}-10 q^{68}-10 q^{67}+7 q^{66}+9 q^{65}+q^{64}-5 q^{63}-9 q^{62}+4 q^{61}+5 q^{60}+2 q^{59}+2 q^{58}-8 q^{57}+q^{56}+5 q^{53}-3 q^{52}+q^{51}-3 q^{50}-4 q^{49}+4 q^{48}+3 q^{46}-q^{45}-4 q^{44}+q^{43}-q^{42}+3 q^{41}+q^{40}-2 q^{39}+q^{38}-q^{37}+q^{36}-2 q^{34}+q^{33}+q^{31}-2 q^{29}+q^{26}+q^{21}+q^{16}</math>|J5=<math>-q^{150}+q^{149}+q^{148}-q^{145}-2 q^{144}-2 q^{143}+2 q^{142}+3 q^{141}+3 q^{140}+3 q^{139}-3 q^{138}-8 q^{137}-5 q^{136}+q^{135}+5 q^{134}+11 q^{133}+6 q^{132}-5 q^{131}-12 q^{130}-12 q^{129}+14 q^{127}+17 q^{126}+5 q^{125}-14 q^{124}-21 q^{123}-9 q^{122}+13 q^{121}+23 q^{120}+10 q^{119}-12 q^{118}-24 q^{117}-12 q^{116}+12 q^{115}+25 q^{114}+12 q^{113}-12 q^{112}-25 q^{111}-12 q^{110}+12 q^{109}+25 q^{108}+12 q^{107}-12 q^{106}-25 q^{105}-12 q^{104}+12 q^{103}+24 q^{102}+12 q^{101}-11 q^{100}-23 q^{99}-11 q^{98}+10 q^{97}+19 q^{96}+12 q^{95}-5 q^{94}-18 q^{93}-11 q^{92}+4 q^{91}+11 q^{90}+13 q^{89}+q^{88}-8 q^{87}-12 q^{86}-6 q^{85}+5 q^{84}+9 q^{83}+6 q^{82}+2 q^{81}-5 q^{80}-10 q^{79}-2 q^{78}+2 q^{77}+4 q^{76}+7 q^{75}+3 q^{74}-5 q^{73}-4 q^{72}-3 q^{71}-q^{70}+3 q^{69}+4 q^{68}-q^{67}+q^{66}-q^{65}-3 q^{64}-2 q^{61}+q^{60}+2 q^{59}-q^{58}+2 q^{57}-2 q^{55}-2 q^{54}+q^{53}-q^{52}+2 q^{51}+2 q^{50}-2 q^{48}+q^{47}-q^{46}+q^{44}-2 q^{42}+q^{41}+q^{38}-2 q^{36}+q^{32}+q^{26}+q^{20}</math>|J6=<math>q^{207}-q^{206}-q^{205}+q^{202}+3 q^{200}+q^{199}-2 q^{198}-3 q^{197}-3 q^{196}-2 q^{195}-2 q^{194}+6 q^{193}+8 q^{192}+5 q^{191}-3 q^{189}-9 q^{188}-15 q^{187}-5 q^{186}+8 q^{185}+12 q^{184}+14 q^{183}+16 q^{182}-3 q^{181}-24 q^{180}-26 q^{179}-10 q^{178}+5 q^{177}+20 q^{176}+39 q^{175}+19 q^{174}-18 q^{173}-37 q^{172}-30 q^{171}-12 q^{170}+16 q^{169}+52 q^{168}+35 q^{167}-7 q^{166}-41 q^{165}-39 q^{164}-22 q^{163}+11 q^{162}+58 q^{161}+41 q^{160}-3 q^{159}-42 q^{158}-42 q^{157}-24 q^{156}+10 q^{155}+59 q^{154}+42 q^{153}-3 q^{152}-42 q^{151}-43 q^{150}-24 q^{149}+10 q^{148}+59 q^{147}+42 q^{146}-3 q^{145}-42 q^{144}-42 q^{143}-24 q^{142}+10 q^{141}+58 q^{140}+41 q^{139}-2 q^{138}-40 q^{137}-39 q^{136}-23 q^{135}+6 q^{134}+51 q^{133}+37 q^{132}+5 q^{131}-31 q^{130}-34 q^{129}-23 q^{128}-4 q^{127}+37 q^{126}+32 q^{125}+15 q^{124}-16 q^{123}-24 q^{122}-23 q^{121}-15 q^{120}+17 q^{119}+23 q^{118}+24 q^{117}-q^{116}-8 q^{115}-15 q^{114}-21 q^{113}-2 q^{112}+6 q^{111}+19 q^{110}+8 q^{109}+5 q^{108}-14 q^{106}-9 q^{105}-8 q^{104}+5 q^{103}+3 q^{102}+7 q^{101}+9 q^{100}-q^{99}-q^{98}-7 q^{97}-q^{96}-6 q^{95}-2 q^{94}+6 q^{93}+q^{92}+5 q^{91}+q^{90}+4 q^{89}-4 q^{88}-6 q^{87}+q^{86}-4 q^{85}+q^{84}+6 q^{82}-q^{80}+3 q^{79}-4 q^{78}-q^{77}-3 q^{76}+2 q^{75}-q^{74}-q^{73}+3 q^{72}-q^{71}+q^{70}-q^{69}+2 q^{68}-q^{67}-q^{66}-2 q^{64}+q^{63}-q^{62}+2 q^{61}+q^{60}+q^{59}-2 q^{57}+q^{56}-q^{55}+q^{52}-2 q^{50}+q^{49}+q^{45}-2 q^{43}+q^{38}+q^{31}+q^{24}</math>|J7=<math>-q^{273}+q^{272}+q^{271}-q^{268}-q^{266}-2 q^{265}-q^{264}+2 q^{263}+3 q^{262}+4 q^{261}+q^{260}+q^{258}-7 q^{257}-9 q^{256}-5 q^{255}+5 q^{253}+8 q^{252}+10 q^{251}+15 q^{250}+4 q^{249}-10 q^{248}-16 q^{247}-21 q^{246}-15 q^{245}-7 q^{244}+10 q^{243}+32 q^{242}+35 q^{241}+18 q^{240}+2 q^{239}-24 q^{238}-46 q^{237}-42 q^{236}-25 q^{235}+17 q^{234}+50 q^{233}+56 q^{232}+48 q^{231}+3 q^{230}-47 q^{229}-68 q^{228}-68 q^{227}-23 q^{226}+41 q^{225}+71 q^{224}+84 q^{223}+39 q^{222}-33 q^{221}-74 q^{220}-94 q^{219}-49 q^{218}+28 q^{217}+74 q^{216}+100 q^{215}+57 q^{214}-26 q^{213}-75 q^{212}-102 q^{211}-59 q^{210}+25 q^{209}+74 q^{208}+104 q^{207}+61 q^{206}-25 q^{205}-74 q^{204}-105 q^{203}-61 q^{202}+25 q^{201}+74 q^{200}+105 q^{199}+61 q^{198}-25 q^{197}-74 q^{196}-105 q^{195}-61 q^{194}+25 q^{193}+74 q^{192}+105 q^{191}+61 q^{190}-25 q^{189}-74 q^{188}-104 q^{187}-61 q^{186}+25 q^{185}+73 q^{184}+102 q^{183}+60 q^{182}-23 q^{181}-71 q^{180}-99 q^{179}-60 q^{178}+20 q^{177}+64 q^{176}+94 q^{175}+62 q^{174}-15 q^{173}-57 q^{172}-88 q^{171}-59 q^{170}+5 q^{169}+42 q^{168}+80 q^{167}+63 q^{166}+4 q^{165}-31 q^{164}-66 q^{163}-60 q^{162}-16 q^{161}+14 q^{160}+51 q^{159}+58 q^{158}+24 q^{157}+6 q^{156}-37 q^{155}-51 q^{154}-28 q^{153}-16 q^{152}+14 q^{151}+34 q^{150}+30 q^{149}+31 q^{148}+q^{147}-25 q^{146}-21 q^{145}-27 q^{144}-14 q^{143}+q^{142}+10 q^{141}+31 q^{140}+20 q^{139}+3 q^{138}+2 q^{137}-11 q^{136}-16 q^{135}-16 q^{134}-13 q^{133}+7 q^{132}+10 q^{131}+6 q^{130}+16 q^{129}+7 q^{128}+2 q^{127}-7 q^{126}-13 q^{125}-4 q^{124}-6 q^{123}-8 q^{122}+5 q^{121}+8 q^{120}+8 q^{119}+3 q^{118}+6 q^{116}-4 q^{115}-9 q^{114}-3 q^{113}-q^{112}-q^{111}-2 q^{110}+q^{109}+9 q^{108}+2 q^{107}-q^{106}+2 q^{105}+q^{104}-q^{103}-6 q^{102}-4 q^{101}+4 q^{100}-2 q^{99}-2 q^{98}+2 q^{97}+3 q^{96}+3 q^{95}-q^{94}-2 q^{93}+4 q^{92}-2 q^{91}-4 q^{90}-q^{89}-q^{88}+2 q^{87}-q^{86}-2 q^{85}+4 q^{84}+q^{83}-2 q^{82}+q^{81}-q^{80}+2 q^{79}-q^{78}-2 q^{77}+q^{76}-2 q^{74}+q^{73}-q^{72}+2 q^{71}+q^{70}+q^{68}-2 q^{66}+q^{65}-q^{64}+q^{60}-2 q^{58}+q^{57}+q^{52}-2 q^{50}+q^{44}+q^{36}+q^{28}</math>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 47: Line 80:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14],
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20],
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20],
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></pre></td></tr>
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -4, 6, -5, 7, 10, -2, -3, 9, -8, 4, -6, 5, -7,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -4, 6, -5, 7, 10, -2, -3, 9, -8, 4, -6, 5, -7,
3, -9, 8]</nowiki></pre></td></tr>
3, -9, 8]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, -14, -16, 2, -18, -20, -6, -8, -12]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 1, 1, 1, 2, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 2, 1, 1, 1, 2, 2}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 139]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 2 3 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 139]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 139]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_139_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 139]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 4, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 139]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 2 3 4
-3 + t - t + - + 2 t - t + t
-3 + t - t + - + 2 t - t + t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 139]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 139]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
1 + 9 z + 14 z + 7 z + z</nowiki></pre></td></tr>
1 + 9 z + 14 z + 7 z + z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 139]], KnotSignature[Knot[10, 139]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 139]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 139]], KnotSignature[Knot[10, 139]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 9 10 11 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 139]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 9 10 11 12
q + q - q + q - q + q - q</nowiki></pre></td></tr>
q + q - q + q - q + q - q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 139]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 139]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 14 16 18 20 22 28 32 34 36 38 40
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 139]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 14 16 18 20 22 28 32 34 36 38 40
q + q + 2 q + 2 q + q - q - q - q - q - q + q</nowiki></pre></td></tr>
q + q + 2 q + 2 q + q - q - q - q - q - q + q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 139]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 139]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 6 6 8
-12 6 6 z 13 z 21 z 7 z 21 z z 8 z z
a - --- + -- + --- - ----- + ----- - ---- + ----- - --- + ---- + --
10 8 12 10 8 10 8 10 8 8
a a a a a a a a a a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 139]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3
-12 6 6 2 z z 5 z 6 z 2 z 19 z 21 z z
-12 6 6 2 z z 5 z 6 z 2 z 19 z 21 z z
a + --- + -- - --- - --- - --- - --- - ---- - ----- - ----- + --- +
a + --- + -- - --- - --- - --- - --- - ---- - ----- - ----- + --- +
Line 100: Line 162:
8 11 9 10 8
8 11 9 10 8
a a a a a</nowiki></pre></td></tr>
a a a a a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 139]], Vassiliev[3][Knot[10, 139]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 25}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 139]], Vassiliev[3][Knot[10, 139]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 139]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{9, 25}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 2 15 3 13 4 15 4 15 5 17 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 139]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 2 15 3 13 4 15 4 15 5 17 5
q + q + q t + q t + q t + q t + q t + q t +
q + q + q t + q t + q t + q t + q t + q t +
19 5 17 6 19 6 21 7 21 8 25 9
19 5 17 6 19 6 21 7 21 8 25 9
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 139], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 11 14 15 17 18 19 20 22 23
q + q + q - 2 q + 2 q - 2 q - q + 3 q - 3 q + 2 q +
24 25 26 27 28 29 30 31 32 33
q - 4 q + 2 q + q - 3 q + q + 2 q - q - q + q</nowiki></pre></td></tr>

</table>
</table>

See/edit the [[Rolfsen_Splice_Template]].


[[Category:Knot Page]]
[[Category:Knot Page]]

Revision as of 17:02, 29 August 2005

10 138.gif

10_138

10 140.gif

10_140

10 139.gif Visit 10 139's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 139's page at Knotilus!

Visit 10 139's page at the original Knot Atlas!

10 139 Quick Notes


10 139 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X11,19,12,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8 X13,1,14,20 X19,13,20,12 X2,10,3,9
Gauss code 1, -10, 2, -1, -4, 6, -5, 7, 10, -2, -3, 9, -8, 4, -6, 5, -7, 3, -9, 8
Dowker-Thistlethwaite code 4 10 -14 -16 2 -18 -20 -6 -8 -12
Conway Notation [4,3,3-]

Minimum Braid Representative:

BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3.

Braid index is 3.

A Morse Link Presentation:

10 139 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 4
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [7][-16]
Hyperbolic Volume 4.85117
A-Polynomial See Data:10 139/A-polynomial

[edit Notes for 10 139's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -8

[edit Notes for 10 139's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (9, 25)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 139. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23          0
21       11 0
19     11   0
17     11   0
15   111    -1
13    1     1
11  1       1
91         1
71         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials