10 66: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a245]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 73: | ||
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math> q^{-6} -2 q^{-7} + q^{-8} +8 q^{-9} -12 q^{-10} -4 q^{-11} +33 q^{-12} -28 q^{-13} -27 q^{-14} +73 q^{-15} -36 q^{-16} -67 q^{-17} +113 q^{-18} -28 q^{-19} -105 q^{-20} +131 q^{-21} -10 q^{-22} -122 q^{-23} +116 q^{-24} +8 q^{-25} -104 q^{-26} +77 q^{-27} +15 q^{-28} -62 q^{-29} +36 q^{-30} +10 q^{-31} -24 q^{-32} +10 q^{-33} +3 q^{-34} -4 q^{-35} + q^{-36} </math>|J3=<math> q^{-9} -2 q^{-10} + q^{-11} +3 q^{-12} +3 q^{-13} -12 q^{-14} -4 q^{-15} +21 q^{-16} +23 q^{-17} -41 q^{-18} -45 q^{-19} +43 q^{-20} +105 q^{-21} -56 q^{-22} -155 q^{-23} +18 q^{-24} +243 q^{-25} +16 q^{-26} -301 q^{-27} -107 q^{-28} +378 q^{-29} +187 q^{-30} -405 q^{-31} -307 q^{-32} +436 q^{-33} +407 q^{-34} -426 q^{-35} -514 q^{-36} +403 q^{-37} +601 q^{-38} -365 q^{-39} -660 q^{-40} +301 q^{-41} +701 q^{-42} -237 q^{-43} -696 q^{-44} +160 q^{-45} +661 q^{-46} -92 q^{-47} -584 q^{-48} +28 q^{-49} +490 q^{-50} +11 q^{-51} -378 q^{-52} -37 q^{-53} +277 q^{-54} +39 q^{-55} -183 q^{-56} -38 q^{-57} +118 q^{-58} +24 q^{-59} -65 q^{-60} -20 q^{-61} +39 q^{-62} +7 q^{-63} -16 q^{-64} -4 q^{-65} +6 q^{-66} +3 q^{-67} -4 q^{-68} + q^{-69} </math>|J4=<math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} +3 q^{-17} -13 q^{-18} +2 q^{-19} +23 q^{-20} +2 q^{-21} +10 q^{-22} -67 q^{-23} -28 q^{-24} +73 q^{-25} +64 q^{-26} +92 q^{-27} -186 q^{-28} -194 q^{-29} +49 q^{-30} +197 q^{-31} +433 q^{-32} -218 q^{-33} -523 q^{-34} -279 q^{-35} +171 q^{-36} +1072 q^{-37} +138 q^{-38} -726 q^{-39} -962 q^{-40} -378 q^{-41} +1683 q^{-42} +940 q^{-43} -401 q^{-44} -1656 q^{-45} -1497 q^{-46} +1821 q^{-47} +1837 q^{-48} +539 q^{-49} -1946 q^{-50} -2839 q^{-51} +1378 q^{-52} +2444 q^{-53} +1786 q^{-54} -1738 q^{-55} -3999 q^{-56} +578 q^{-57} +2647 q^{-58} +2979 q^{-59} -1198 q^{-60} -4771 q^{-61} -330 q^{-62} +2500 q^{-63} +3893 q^{-64} -478 q^{-65} -5038 q^{-66} -1196 q^{-67} +2008 q^{-68} +4344 q^{-69} +331 q^{-70} -4647 q^{-71} -1809 q^{-72} +1172 q^{-73} +4094 q^{-74} +1037 q^{-75} -3575 q^{-76} -1907 q^{-77} +237 q^{-78} +3138 q^{-79} +1318 q^{-80} -2200 q^{-81} -1430 q^{-82} -368 q^{-83} +1881 q^{-84} +1081 q^{-85} -1070 q^{-86} -731 q^{-87} -479 q^{-88} +878 q^{-89} +616 q^{-90} -441 q^{-91} -230 q^{-92} -312 q^{-93} +333 q^{-94} +255 q^{-95} -175 q^{-96} -30 q^{-97} -135 q^{-98} +110 q^{-99} +80 q^{-100} -66 q^{-101} +9 q^{-102} -42 q^{-103} +29 q^{-104} +20 q^{-105} -19 q^{-106} +4 q^{-107} -8 q^{-108} +6 q^{-109} +3 q^{-110} -4 q^{-111} + q^{-112} </math>|J5=<math> q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} -2 q^{-19} -2 q^{-20} +2 q^{-21} -7 q^{-22} +3 q^{-23} +20 q^{-24} +5 q^{-25} -17 q^{-26} -17 q^{-27} -40 q^{-28} +2 q^{-29} +81 q^{-30} +93 q^{-31} +6 q^{-32} -95 q^{-33} -217 q^{-34} -146 q^{-35} +145 q^{-36} +388 q^{-37} +358 q^{-38} +8 q^{-39} -589 q^{-40} -807 q^{-41} -294 q^{-42} +631 q^{-43} +1298 q^{-44} +1055 q^{-45} -422 q^{-46} -1881 q^{-47} -1953 q^{-48} -368 q^{-49} +2028 q^{-50} +3311 q^{-51} +1689 q^{-52} -1807 q^{-53} -4307 q^{-54} -3616 q^{-55} +510 q^{-56} +5178 q^{-57} +5833 q^{-58} +1377 q^{-59} -4932 q^{-60} -8010 q^{-61} -4336 q^{-62} +3966 q^{-63} +9713 q^{-64} +7475 q^{-65} -1645 q^{-66} -10611 q^{-67} -10992 q^{-68} -1276 q^{-69} +10504 q^{-70} +13934 q^{-71} +5094 q^{-72} -9441 q^{-73} -16569 q^{-74} -8880 q^{-75} +7555 q^{-76} +18254 q^{-77} +12832 q^{-78} -5102 q^{-79} -19456 q^{-80} -16321 q^{-81} +2389 q^{-82} +19912 q^{-83} +19501 q^{-84} +446 q^{-85} -19991 q^{-86} -22235 q^{-87} -3206 q^{-88} +19703 q^{-89} +24507 q^{-90} +5915 q^{-91} -19023 q^{-92} -26444 q^{-93} -8553 q^{-94} +18043 q^{-95} +27810 q^{-96} +11104 q^{-97} -16437 q^{-98} -28639 q^{-99} -13581 q^{-100} +14359 q^{-101} +28564 q^{-102} +15773 q^{-103} -11583 q^{-104} -27561 q^{-105} -17462 q^{-106} +8386 q^{-107} +25406 q^{-108} +18387 q^{-109} -4942 q^{-110} -22316 q^{-111} -18285 q^{-112} +1738 q^{-113} +18385 q^{-114} +17153 q^{-115} +965 q^{-116} -14217 q^{-117} -15075 q^{-118} -2753 q^{-119} +10117 q^{-120} +12370 q^{-121} +3698 q^{-122} -6640 q^{-123} -9456 q^{-124} -3764 q^{-125} +3899 q^{-126} +6721 q^{-127} +3315 q^{-128} -2072 q^{-129} -4411 q^{-130} -2537 q^{-131} +892 q^{-132} +2713 q^{-133} +1791 q^{-134} -368 q^{-135} -1525 q^{-136} -1078 q^{-137} +46 q^{-138} +817 q^{-139} +657 q^{-140} -31 q^{-141} -410 q^{-142} -300 q^{-143} -18 q^{-144} +184 q^{-145} +170 q^{-146} -5 q^{-147} -101 q^{-148} -61 q^{-149} +12 q^{-150} +39 q^{-151} +19 q^{-152} +5 q^{-153} -23 q^{-154} -20 q^{-155} +17 q^{-156} +10 q^{-157} -6 q^{-158} + q^{-159} -8 q^{-161} +6 q^{-162} +3 q^{-163} -4 q^{-164} + q^{-165} </math>|J6=<math> q^{-18} -2 q^{-19} + q^{-20} +3 q^{-21} -2 q^{-22} -2 q^{-23} -3 q^{-24} +8 q^{-25} -6 q^{-26} +22 q^{-28} -4 q^{-29} -15 q^{-30} -33 q^{-31} +12 q^{-32} -11 q^{-33} +12 q^{-34} +109 q^{-35} +45 q^{-36} -30 q^{-37} -169 q^{-38} -92 q^{-39} -145 q^{-40} -8 q^{-41} +399 q^{-42} +417 q^{-43} +267 q^{-44} -312 q^{-45} -484 q^{-46} -945 q^{-47} -718 q^{-48} +517 q^{-49} +1363 q^{-50} +1806 q^{-51} +759 q^{-52} -232 q^{-53} -2577 q^{-54} -3504 q^{-55} -1710 q^{-56} +1087 q^{-57} +4331 q^{-58} +4838 q^{-59} +4099 q^{-60} -1819 q^{-61} -7223 q^{-62} -8412 q^{-63} -5186 q^{-64} +2619 q^{-65} +9264 q^{-66} +14519 q^{-67} +7614 q^{-68} -4181 q^{-69} -14862 q^{-70} -18731 q^{-71} -10973 q^{-72} +3647 q^{-73} +23531 q^{-74} +25770 q^{-75} +14209 q^{-76} -8018 q^{-77} -28920 q^{-78} -34705 q^{-79} -20922 q^{-80} +15622 q^{-81} +38976 q^{-82} +44006 q^{-83} +20800 q^{-84} -18491 q^{-85} -52186 q^{-86} -58073 q^{-87} -17154 q^{-88} +29079 q^{-89} +66699 q^{-90} +63094 q^{-91} +19104 q^{-92} -45268 q^{-93} -87954 q^{-94} -64499 q^{-95} -8764 q^{-96} +64897 q^{-97} +98738 q^{-98} +72032 q^{-99} -10940 q^{-100} -94527 q^{-101} -106650 q^{-102} -61777 q^{-103} +37275 q^{-104} +113524 q^{-105} +121253 q^{-106} +37707 q^{-107} -77814 q^{-108} -131152 q^{-109} -112182 q^{-110} -3359 q^{-111} +108395 q^{-112} +155711 q^{-113} +84670 q^{-114} -49577 q^{-115} -139215 q^{-116} -150494 q^{-117} -43178 q^{-118} +93488 q^{-119} +176291 q^{-120} +122336 q^{-121} -20779 q^{-122} -138757 q^{-123} -177616 q^{-124} -76882 q^{-125} +76464 q^{-126} +188492 q^{-127} +152178 q^{-128} +6344 q^{-129} -133783 q^{-130} -197392 q^{-131} -107215 q^{-132} +56166 q^{-133} +192865 q^{-134} +177073 q^{-135} +36403 q^{-136} -119619 q^{-137} -207712 q^{-138} -136562 q^{-139} +26139 q^{-140} +181743 q^{-141} +192656 q^{-142} +71194 q^{-143} -88400 q^{-144} -198592 q^{-145} -158247 q^{-146} -14279 q^{-147} +146792 q^{-148} +186918 q^{-149} +101207 q^{-150} -41454 q^{-151} -161908 q^{-152} -158190 q^{-153} -52386 q^{-154} +92208 q^{-155} +152282 q^{-156} +110215 q^{-157} +5020 q^{-158} -104830 q^{-159} -129424 q^{-160} -70153 q^{-161} +37579 q^{-162} +98405 q^{-163} +91783 q^{-164} +31675 q^{-165} -49065 q^{-166} -83258 q^{-167} -61888 q^{-168} +2693 q^{-169} +47459 q^{-170} +57844 q^{-171} +33653 q^{-172} -13203 q^{-173} -40753 q^{-174} -39411 q^{-175} -8703 q^{-176} +15411 q^{-177} +27114 q^{-178} +22137 q^{-179} +838 q^{-180} -14669 q^{-181} -18678 q^{-182} -6914 q^{-183} +2273 q^{-184} +9133 q^{-185} +10343 q^{-186} +2700 q^{-187} -3705 q^{-188} -6736 q^{-189} -2762 q^{-190} -656 q^{-191} +2006 q^{-192} +3625 q^{-193} +1353 q^{-194} -613 q^{-195} -1941 q^{-196} -506 q^{-197} -527 q^{-198} +158 q^{-199} +1014 q^{-200} +376 q^{-201} -74 q^{-202} -504 q^{-203} +89 q^{-204} -169 q^{-205} -79 q^{-206} +248 q^{-207} +64 q^{-208} -20 q^{-209} -140 q^{-210} +100 q^{-211} -35 q^{-212} -41 q^{-213} +57 q^{-214} +2 q^{-215} -4 q^{-216} -42 q^{-217} +39 q^{-218} -2 q^{-219} -16 q^{-220} +14 q^{-221} -3 q^{-222} -8 q^{-224} +6 q^{-225} +3 q^{-226} -4 q^{-227} + q^{-228} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 83: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 66]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], |
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], |
||
X[19, 12, 20, 13], X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
X[19, 12, 20, 13], X[13, 8, 14, 9], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 66]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, |
|||
7, -8, 6]</nowiki></pre></td></tr> |
7, -8, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 16, 2, 18, 8, 6, 20, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, -3, -2, -2, -2, -3, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 66]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 66]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 66]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_66_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 66]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 66]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 9 16 2 3 |
|||
-19 + -- - -- + -- + 16 t - 9 t + 3 t |
-19 + -- - -- + -- + 16 t - 9 t + 3 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 66]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 66]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 7 z + 9 z + 3 z</nowiki></pre></td></tr> |
1 + 7 z + 9 z + 3 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 66], Knot[11, Alternating, 245]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{75, -6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 66]], KnotSignature[Knot[10, 66]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{75, -6}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 66]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 4 7 10 12 13 11 8 6 2 -3 |
|||
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q |
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q |
||
12 11 10 9 8 7 6 5 4 |
12 11 10 9 8 7 6 5 4 |
||
q q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 66]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 66]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 66]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -40 2 -34 2 3 2 2 3 2 3 -12 |
|||
q - --- + q - --- - --- + --- - --- + --- + --- + --- - q + |
q - --- + q - --- - --- + --- - --- + --- + --- + --- - q + |
||
36 32 26 24 22 20 18 14 |
36 32 26 24 22 20 18 14 |
||
Line 92: | Line 147: | ||
-10 |
-10 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 66]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 66]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 6 2 8 2 10 2 12 2 |
|||
2 a + 2 a - 4 a + a + 5 a z + 9 a z - 8 a z + a z + |
|||
6 4 8 4 10 4 6 6 8 6 |
|||
4 a z + 8 a z - 3 a z + a z + 2 a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 66]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 7 9 11 6 2 |
|||
-2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z - |
-2 a + 2 a + 4 a + a + a z - 5 a z - 6 a z + 5 a z - |
||
Line 113: | Line 176: | ||
10 8 12 8 9 9 11 9 |
10 8 12 8 9 9 11 9 |
||
7 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
7 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 66]], Vassiliev[3][Knot[10, 66]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -17}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 3 1 4 3 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 66]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 3 1 4 3 6 |
|||
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
||
27 10 25 9 23 9 23 8 21 8 21 7 |
27 10 25 9 23 9 23 8 21 8 21 7 |
||
Line 130: | Line 195: | ||
13 3 11 3 11 2 9 2 7 |
13 3 11 3 11 2 9 2 7 |
||
q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 66], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 4 3 10 24 10 36 62 15 77 104 |
|||
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + |
|||
35 34 33 32 31 30 29 28 27 26 |
|||
q q q q q q q q q q |
|||
8 116 122 10 131 105 28 113 67 36 73 |
|||
--- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - |
|||
25 24 23 22 21 20 19 18 17 16 15 |
|||
q q q q q q q q q q q |
|||
27 28 33 4 12 8 -8 2 -6 |
|||
--- - --- + --- - --- - --- + -- + q - -- + q |
|||
14 13 12 11 10 9 7 |
|||
q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:18, 29 August 2005
|
|
Visit 10 66's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 66's page at Knotilus! Visit 10 66's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -3, 5, -4, 9, -10, 2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 10 14 16 2 18 8 6 20 12 |
Conway Notation | [31,21,21] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 66"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a245, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (7, -17) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 66. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.