9 6: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 201: | Line 202: | ||
</table> |
</table> |
||
{| width=100% |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 21:02, 29 August 2005
|
|
![]() |
Visit 9 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 6's page at Knotilus! Visit 9 6's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X15,6,16,7 X17,8,18,9 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 6, -4, 7, -5, 8, -9, 2, -8, 3, -6, 4, -7, 5 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 6 8 |
Conway Notation | [522] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 27, -6 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} +3 q^{-5} -3 q^{-6} +4 q^{-7} -5 q^{-8} +4 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+5 t-5+5 t^{-1} -4 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+7 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} +3 q^{-5} -3 q^{-6} +4 q^{-7} -5 q^{-8} +4 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}-3 z^2 a^{10}-a^{10}+z^6 a^8+4 z^4 a^8+3 z^2 a^8-a^8+z^6 a^6+5 z^4 a^6+7 z^2 a^6+3 a^6} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 9 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-7} +4 q^{-9} -3 q^{-10} -3 q^{-11} +9 q^{-12} -4 q^{-13} -8 q^{-14} +12 q^{-15} -2 q^{-16} -13 q^{-17} +14 q^{-18} + q^{-19} -16 q^{-20} +14 q^{-21} +3 q^{-22} -16 q^{-23} +11 q^{-24} +3 q^{-25} -11 q^{-26} +7 q^{-27} + q^{-28} -5 q^{-29} +4 q^{-30} -2 q^{-32} + q^{-33} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-9} - q^{-10} + q^{-12} +3 q^{-13} -3 q^{-14} -3 q^{-15} +2 q^{-16} +9 q^{-17} -4 q^{-18} -9 q^{-19} -2 q^{-20} +17 q^{-21} -14 q^{-23} -9 q^{-24} +18 q^{-25} +8 q^{-26} -12 q^{-27} -16 q^{-28} +14 q^{-29} +13 q^{-30} -6 q^{-31} -17 q^{-32} +5 q^{-33} +15 q^{-34} -16 q^{-36} -4 q^{-37} +16 q^{-38} +5 q^{-39} -13 q^{-40} -10 q^{-41} +14 q^{-42} +9 q^{-43} -10 q^{-44} -9 q^{-45} +8 q^{-46} +6 q^{-47} -4 q^{-48} -3 q^{-49} +3 q^{-50} - q^{-51} -2 q^{-52} +3 q^{-53} +2 q^{-54} -4 q^{-55} -2 q^{-56} +3 q^{-57} +3 q^{-58} -3 q^{-59} - q^{-60} +2 q^{-62} - q^{-63} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} - q^{-13} + q^{-15} +3 q^{-17} -4 q^{-18} -2 q^{-19} +3 q^{-20} + q^{-21} +10 q^{-22} -9 q^{-23} -9 q^{-24} + q^{-25} + q^{-26} +25 q^{-27} -8 q^{-28} -16 q^{-29} -8 q^{-30} -9 q^{-31} +41 q^{-32} - q^{-33} -13 q^{-34} -13 q^{-35} -27 q^{-36} +45 q^{-37} +2 q^{-38} - q^{-39} -4 q^{-40} -40 q^{-41} +40 q^{-42} -9 q^{-43} +4 q^{-44} +15 q^{-45} -36 q^{-46} +35 q^{-47} -32 q^{-48} - q^{-49} +34 q^{-50} -22 q^{-51} +37 q^{-52} -56 q^{-53} -13 q^{-54} +48 q^{-55} -6 q^{-56} +42 q^{-57} -75 q^{-58} -24 q^{-59} +60 q^{-60} +7 q^{-61} +44 q^{-62} -88 q^{-63} -34 q^{-64} +66 q^{-65} +19 q^{-66} +45 q^{-67} -91 q^{-68} -42 q^{-69} +57 q^{-70} +26 q^{-71} +52 q^{-72} -76 q^{-73} -48 q^{-74} +34 q^{-75} +21 q^{-76} +56 q^{-77} -47 q^{-78} -39 q^{-79} +10 q^{-80} +3 q^{-81} +49 q^{-82} -18 q^{-83} -22 q^{-84} -2 q^{-85} -10 q^{-86} +32 q^{-87} -4 q^{-88} -7 q^{-89} -3 q^{-90} -12 q^{-91} +16 q^{-92} - q^{-95} -7 q^{-96} +5 q^{-97} + q^{-99} -2 q^{-101} + q^{-102} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} - q^{-16} + q^{-18} +2 q^{-21} -3 q^{-22} -2 q^{-23} +3 q^{-24} +3 q^{-25} + q^{-26} +4 q^{-27} -8 q^{-28} -9 q^{-29} +9 q^{-31} +9 q^{-32} +13 q^{-33} -9 q^{-34} -22 q^{-35} -14 q^{-36} +3 q^{-37} +18 q^{-38} +33 q^{-39} +4 q^{-40} -25 q^{-41} -30 q^{-42} -17 q^{-43} +7 q^{-44} +47 q^{-45} +23 q^{-46} -12 q^{-47} -26 q^{-48} -29 q^{-49} -11 q^{-50} +34 q^{-51} +26 q^{-52} -5 q^{-53} -9 q^{-54} -12 q^{-55} -8 q^{-56} +21 q^{-57} + q^{-58} -27 q^{-59} -10 q^{-60} +16 q^{-61} +34 q^{-62} +35 q^{-63} -23 q^{-64} -78 q^{-65} -42 q^{-66} +29 q^{-67} +88 q^{-68} +82 q^{-69} -24 q^{-70} -127 q^{-71} -99 q^{-72} +18 q^{-73} +132 q^{-74} +139 q^{-75} - q^{-76} -159 q^{-77} -159 q^{-78} -10 q^{-79} +163 q^{-80} +188 q^{-81} +25 q^{-82} -174 q^{-83} -208 q^{-84} -36 q^{-85} +184 q^{-86} +224 q^{-87} +42 q^{-88} -187 q^{-89} -242 q^{-90} -52 q^{-91} +201 q^{-92} +251 q^{-93} +55 q^{-94} -196 q^{-95} -265 q^{-96} -70 q^{-97} +202 q^{-98} +267 q^{-99} +81 q^{-100} -184 q^{-101} -271 q^{-102} -97 q^{-103} +166 q^{-104} +258 q^{-105} +111 q^{-106} -134 q^{-107} -241 q^{-108} -116 q^{-109} +102 q^{-110} +203 q^{-111} +117 q^{-112} -66 q^{-113} -167 q^{-114} -107 q^{-115} +40 q^{-116} +125 q^{-117} +89 q^{-118} -15 q^{-119} -90 q^{-120} -71 q^{-121} +2 q^{-122} +61 q^{-123} +54 q^{-124} +4 q^{-125} -39 q^{-126} -38 q^{-127} -7 q^{-128} +21 q^{-129} +28 q^{-130} +10 q^{-131} -16 q^{-132} -17 q^{-133} -5 q^{-134} +3 q^{-135} +11 q^{-136} +10 q^{-137} -5 q^{-138} -7 q^{-139} - q^{-140} -3 q^{-141} +3 q^{-142} +5 q^{-143} - q^{-144} -2 q^{-145} - q^{-147} +2 q^{-149} - q^{-150} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} - q^{-19} + q^{-21} - q^{-24} +3 q^{-25} -3 q^{-26} -2 q^{-27} +4 q^{-28} +2 q^{-29} +2 q^{-30} -4 q^{-31} +5 q^{-32} -9 q^{-33} -9 q^{-34} +6 q^{-35} +8 q^{-36} +12 q^{-37} -3 q^{-38} +13 q^{-39} -20 q^{-40} -28 q^{-41} -4 q^{-42} +6 q^{-43} +28 q^{-44} +10 q^{-45} +42 q^{-46} -18 q^{-47} -47 q^{-48} -32 q^{-49} -19 q^{-50} +23 q^{-51} +14 q^{-52} +88 q^{-53} +9 q^{-54} -35 q^{-55} -46 q^{-56} -49 q^{-57} -5 q^{-58} -19 q^{-59} +110 q^{-60} +29 q^{-61} -6 q^{-62} -29 q^{-63} -40 q^{-64} -9 q^{-65} -55 q^{-66} +101 q^{-67} +5 q^{-68} -15 q^{-69} -33 q^{-70} -9 q^{-71} +38 q^{-72} -34 q^{-73} +127 q^{-74} -25 q^{-75} -77 q^{-76} -112 q^{-77} -32 q^{-78} +82 q^{-79} +43 q^{-80} +229 q^{-81} +16 q^{-82} -123 q^{-83} -243 q^{-84} -139 q^{-85} +49 q^{-86} +99 q^{-87} +371 q^{-88} +144 q^{-89} -85 q^{-90} -344 q^{-91} -286 q^{-92} -68 q^{-93} +74 q^{-94} +478 q^{-95} +310 q^{-96} +32 q^{-97} -365 q^{-98} -405 q^{-99} -222 q^{-100} -24 q^{-101} +517 q^{-102} +457 q^{-103} +179 q^{-104} -323 q^{-105} -471 q^{-106} -362 q^{-107} -149 q^{-108} +506 q^{-109} +565 q^{-110} +313 q^{-111} -262 q^{-112} -502 q^{-113} -465 q^{-114} -253 q^{-115} +480 q^{-116} +640 q^{-117} +410 q^{-118} -218 q^{-119} -523 q^{-120} -535 q^{-121} -319 q^{-122} +468 q^{-123} +698 q^{-124} +474 q^{-125} -198 q^{-126} -550 q^{-127} -588 q^{-128} -360 q^{-129} +459 q^{-130} +744 q^{-131} +529 q^{-132} -165 q^{-133} -559 q^{-134} -634 q^{-135} -410 q^{-136} +411 q^{-137} +743 q^{-138} +578 q^{-139} -81 q^{-140} -499 q^{-141} -628 q^{-142} -464 q^{-143} +293 q^{-144} +646 q^{-145} +566 q^{-146} +27 q^{-147} -352 q^{-148} -519 q^{-149} -457 q^{-150} +150 q^{-151} +453 q^{-152} +450 q^{-153} +80 q^{-154} -184 q^{-155} -329 q^{-156} -357 q^{-157} +63 q^{-158} +251 q^{-159} +275 q^{-160} +58 q^{-161} -74 q^{-162} -157 q^{-163} -222 q^{-164} +41 q^{-165} +122 q^{-166} +136 q^{-167} +13 q^{-168} -30 q^{-169} -63 q^{-170} -123 q^{-171} +41 q^{-172} +58 q^{-173} +66 q^{-174} -7 q^{-175} -14 q^{-176} -26 q^{-177} -72 q^{-178} +32 q^{-179} +26 q^{-180} +35 q^{-181} -6 q^{-182} -2 q^{-183} -11 q^{-184} -41 q^{-185} +17 q^{-186} +6 q^{-187} +18 q^{-188} -2 q^{-189} +5 q^{-190} -3 q^{-191} -20 q^{-192} +7 q^{-193} -2 q^{-194} +7 q^{-195} - q^{-196} +4 q^{-197} -7 q^{-199} +3 q^{-200} -2 q^{-201} +2 q^{-202} + q^{-204} -2 q^{-206} + q^{-207} } |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.
Back to the top. |
|