The Kauffman Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 29: Line 29:
{{InOut1|n=3}}
{{InOut1|n=3}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre>
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre>
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3 5 3 7 3 4 4
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 2 a z + a z + a z +
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
6 4
5 3 7 3 4 4 6 4
a z</nowiki></pre>
2 a z + a z + a z + a z</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->

Revision as of 21:31, 28 August 2005


The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations

(here is a strand and is the same strand with a kink added) and

(here , , and are Backoverslash symbol.gif, Slashoverback symbol.gif, Vsmoothing symbol.gif and Hsmoothing symbol.gif, respectively), and by the initial condition where is the unknot BigCirc symbol.gif.

KnotTheory` knows about the Kauffman polynomial:

(For In[1] see Setup)

In[1]:= ?Kauffman

Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.

In[2]:= Kauffman::about

The Kauffman program was written by Scott Morrison.

Thus, for example, here's the Kauffman polynomial of the knot 5_2:

In[3]:=
Kauffman[Knot[5, 2]][a, z]
Out[3]=
  2    4    6      5        7      2  2    4  2      6  2    3  3
-a  + a  + a  - 2 a  z - 2 a  z + a  z  - a  z  - 2 a  z  + a  z  + 
 
     5  3    7  3    4  4    6  4
  2 a  z  + a  z  + a  z  + a  z

It is well known that the Jones polynomial is related to the Kauffman polynomial via

,

where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):

In[4]:=
K = TorusKnot[8, 3];
In[5]:=
Simplify[{
  (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
  Jones[K][q]
}]
Out[5]=
  7    9    16   7    9    16
{q  + q  - q  , q  + q  - q  }

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.