9 15: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 15 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=15|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = [[10_165]], [[K11n63]], [[K11n101]], |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[10_165]], [[K11n63]], [[K11n101]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 73: Line 37:
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{23}-2 q^{22}+6 q^{20}-8 q^{19}-4 q^{18}+19 q^{17}-14 q^{16}-15 q^{15}+35 q^{14}-15 q^{13}-28 q^{12}+45 q^{11}-12 q^{10}-36 q^9+45 q^8-7 q^7-33 q^6+33 q^5-q^4-21 q^3+16 q^2+q-8+5 q^{-1} -2 q^{-3} + q^{-4} </math> |

coloured_jones_3 = <math>-q^{45}+2 q^{44}-2 q^{42}-3 q^{41}+7 q^{40}+5 q^{39}-10 q^{38}-14 q^{37}+16 q^{36}+24 q^{35}-14 q^{34}-44 q^{33}+13 q^{32}+60 q^{31}-q^{30}-79 q^{29}-17 q^{28}+97 q^{27}+35 q^{26}-105 q^{25}-60 q^{24}+116 q^{23}+76 q^{22}-113 q^{21}-100 q^{20}+118 q^{19}+106 q^{18}-107 q^{17}-119 q^{16}+101 q^{15}+116 q^{14}-82 q^{13}-114 q^{12}+66 q^{11}+102 q^{10}-46 q^9-84 q^8+28 q^7+64 q^6-13 q^5-46 q^4+8 q^3+26 q^2-2 q-16+3 q^{-1} +7 q^{-2} - q^{-3} -5 q^{-4} +3 q^{-5} + q^{-6} -2 q^{-8} + q^{-9} </math> |
{{Display Coloured Jones|J2=<math>q^{23}-2 q^{22}+6 q^{20}-8 q^{19}-4 q^{18}+19 q^{17}-14 q^{16}-15 q^{15}+35 q^{14}-15 q^{13}-28 q^{12}+45 q^{11}-12 q^{10}-36 q^9+45 q^8-7 q^7-33 q^6+33 q^5-q^4-21 q^3+16 q^2+q-8+5 q^{-1} -2 q^{-3} + q^{-4} </math>|J3=<math>-q^{45}+2 q^{44}-2 q^{42}-3 q^{41}+7 q^{40}+5 q^{39}-10 q^{38}-14 q^{37}+16 q^{36}+24 q^{35}-14 q^{34}-44 q^{33}+13 q^{32}+60 q^{31}-q^{30}-79 q^{29}-17 q^{28}+97 q^{27}+35 q^{26}-105 q^{25}-60 q^{24}+116 q^{23}+76 q^{22}-113 q^{21}-100 q^{20}+118 q^{19}+106 q^{18}-107 q^{17}-119 q^{16}+101 q^{15}+116 q^{14}-82 q^{13}-114 q^{12}+66 q^{11}+102 q^{10}-46 q^9-84 q^8+28 q^7+64 q^6-13 q^5-46 q^4+8 q^3+26 q^2-2 q-16+3 q^{-1} +7 q^{-2} - q^{-3} -5 q^{-4} +3 q^{-5} + q^{-6} -2 q^{-8} + q^{-9} </math>|J4=<math>q^{74}-2 q^{73}+2 q^{71}-q^{70}+4 q^{69}-9 q^{68}-q^{67}+10 q^{66}+14 q^{64}-30 q^{63}-15 q^{62}+22 q^{61}+13 q^{60}+54 q^{59}-58 q^{58}-59 q^{57}+3 q^{56}+23 q^{55}+152 q^{54}-49 q^{53}-112 q^{52}-78 q^{51}-26 q^{50}+280 q^{49}+35 q^{48}-110 q^{47}-199 q^{46}-167 q^{45}+374 q^{44}+169 q^{43}-25 q^{42}-296 q^{41}-358 q^{40}+392 q^{39}+292 q^{38}+113 q^{37}-343 q^{36}-535 q^{35}+358 q^{34}+372 q^{33}+243 q^{32}-347 q^{31}-651 q^{30}+298 q^{29}+401 q^{28}+339 q^{27}-311 q^{26}-694 q^{25}+215 q^{24}+373 q^{23}+392 q^{22}-224 q^{21}-649 q^{20}+106 q^{19}+278 q^{18}+386 q^{17}-101 q^{16}-507 q^{15}+12 q^{14}+135 q^{13}+302 q^{12}+9 q^{11}-307 q^{10}-26 q^9+15 q^8+174 q^7+49 q^6-138 q^5-8 q^4-31 q^3+66 q^2+33 q-47+13 q^{-1} -24 q^{-2} +16 q^{-3} +10 q^{-4} -17 q^{-5} +14 q^{-6} -8 q^{-7} +3 q^{-8} + q^{-9} -7 q^{-10} +6 q^{-11} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} </math>|J5=<math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+2 q^{102}-9 q^{101}-3 q^{100}+3 q^{99}+2 q^{98}+16 q^{97}+9 q^{96}-20 q^{95}-29 q^{94}-12 q^{93}+11 q^{92}+50 q^{91}+54 q^{90}-11 q^{89}-71 q^{88}-92 q^{87}-40 q^{86}+80 q^{85}+160 q^{84}+104 q^{83}-44 q^{82}-203 q^{81}-234 q^{80}-35 q^{79}+234 q^{78}+343 q^{77}+197 q^{76}-177 q^{75}-483 q^{74}-406 q^{73}+65 q^{72}+552 q^{71}+644 q^{70}+162 q^{69}-568 q^{68}-898 q^{67}-440 q^{66}+505 q^{65}+1102 q^{64}+761 q^{63}-335 q^{62}-1276 q^{61}-1109 q^{60}+146 q^{59}+1372 q^{58}+1410 q^{57}+124 q^{56}-1421 q^{55}-1719 q^{54}-342 q^{53}+1418 q^{52}+1924 q^{51}+616 q^{50}-1401 q^{49}-2136 q^{48}-787 q^{47}+1341 q^{46}+2242 q^{45}+1010 q^{44}-1285 q^{43}-2365 q^{42}-1124 q^{41}+1188 q^{40}+2378 q^{39}+1299 q^{38}-1078 q^{37}-2400 q^{36}-1382 q^{35}+916 q^{34}+2309 q^{33}+1499 q^{32}-720 q^{31}-2188 q^{30}-1539 q^{29}+489 q^{28}+1958 q^{27}+1549 q^{26}-241 q^{25}-1669 q^{24}-1482 q^{23}+q^{22}+1332 q^{21}+1338 q^{20}+193 q^{19}-970 q^{18}-1129 q^{17}-328 q^{16}+630 q^{15}+900 q^{14}+368 q^{13}-357 q^{12}-632 q^{11}-356 q^{10}+144 q^9+423 q^8+291 q^7-39 q^6-228 q^5-209 q^4-32 q^3+120 q^2+128 q+39-38 q^{-1} -71 q^{-2} -41 q^{-3} +17 q^{-4} +26 q^{-5} +19 q^{-6} +13 q^{-7} -13 q^{-8} -17 q^{-9} +2 q^{-10} -2 q^{-11} -2 q^{-12} +12 q^{-13} +2 q^{-14} -6 q^{-15} +3 q^{-16} -3 q^{-17} -5 q^{-18} +4 q^{-19} +2 q^{-20} - q^{-21} + q^{-22} -2 q^{-24} + q^{-25} </math>|J6=<math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-3 q^{144}+11 q^{143}-q^{142}-2 q^{141}-13 q^{140}+12 q^{139}-14 q^{138}-8 q^{137}+36 q^{136}+14 q^{135}+4 q^{134}-42 q^{133}+9 q^{132}-56 q^{131}-40 q^{130}+78 q^{129}+73 q^{128}+74 q^{127}-47 q^{126}+18 q^{125}-169 q^{124}-189 q^{123}+32 q^{122}+127 q^{121}+245 q^{120}+106 q^{119}+225 q^{118}-239 q^{117}-465 q^{116}-296 q^{115}-103 q^{114}+287 q^{113}+379 q^{112}+870 q^{111}+139 q^{110}-498 q^{109}-797 q^{108}-869 q^{107}-338 q^{106}+251 q^{105}+1722 q^{104}+1220 q^{103}+356 q^{102}-797 q^{101}-1808 q^{100}-1854 q^{99}-973 q^{98}+1961 q^{97}+2517 q^{96}+2241 q^{95}+419 q^{94}-2012 q^{93}-3651 q^{92}-3328 q^{91}+884 q^{90}+3095 q^{89}+4451 q^{88}+2782 q^{87}-882 q^{86}-4793 q^{85}-6017 q^{84}-1336 q^{83}+2457 q^{82}+6087 q^{81}+5471 q^{80}+1273 q^{79}-4876 q^{78}-8170 q^{77}-3863 q^{76}+959 q^{75}+6803 q^{74}+7686 q^{73}+3621 q^{72}-4237 q^{71}-9459 q^{70}-5964 q^{69}-679 q^{68}+6860 q^{67}+9134 q^{66}+5537 q^{65}-3414 q^{64}-10060 q^{63}-7406 q^{62}-2014 q^{61}+6618 q^{60}+9940 q^{59}+6889 q^{58}-2632 q^{57}-10192 q^{56}-8327 q^{55}-3070 q^{54}+6131 q^{53}+10254 q^{52}+7867 q^{51}-1723 q^{50}-9805 q^{49}-8855 q^{48}-4092 q^{47}+5144 q^{46}+9955 q^{45}+8556 q^{44}-408 q^{43}-8580 q^{42}-8795 q^{41}-5116 q^{40}+3405 q^{39}+8681 q^{38}+8653 q^{37}+1237 q^{36}-6307 q^{35}-7713 q^{34}-5715 q^{33}+1143 q^{32}+6283 q^{31}+7664 q^{30}+2591 q^{29}-3415 q^{28}-5504 q^{27}-5290 q^{26}-813 q^{25}+3352 q^{24}+5548 q^{23}+2923 q^{22}-933 q^{21}-2863 q^{20}-3801 q^{19}-1647 q^{18}+976 q^{17}+3078 q^{16}+2182 q^{15}+326 q^{14}-831 q^{13}-2006 q^{12}-1377 q^{11}-174 q^{10}+1227 q^9+1096 q^8+480 q^7+99 q^6-724 q^5-722 q^4-356 q^3+333 q^2+346 q+231+252 q^{-1} -159 q^{-2} -254 q^{-3} -206 q^{-4} +67 q^{-5} +50 q^{-6} +41 q^{-7} +159 q^{-8} -11 q^{-9} -62 q^{-10} -79 q^{-11} +18 q^{-12} -10 q^{-13} -17 q^{-14} +69 q^{-15} +7 q^{-16} -8 q^{-17} -25 q^{-18} +10 q^{-19} -10 q^{-20} -18 q^{-21} +24 q^{-22} +3 q^{-23} +3 q^{-24} -7 q^{-25} +5 q^{-26} -3 q^{-27} -9 q^{-28} +6 q^{-29} +2 q^{-31} - q^{-32} + q^{-33} -2 q^{-35} + q^{-36} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{74}-2 q^{73}+2 q^{71}-q^{70}+4 q^{69}-9 q^{68}-q^{67}+10 q^{66}+14 q^{64}-30 q^{63}-15 q^{62}+22 q^{61}+13 q^{60}+54 q^{59}-58 q^{58}-59 q^{57}+3 q^{56}+23 q^{55}+152 q^{54}-49 q^{53}-112 q^{52}-78 q^{51}-26 q^{50}+280 q^{49}+35 q^{48}-110 q^{47}-199 q^{46}-167 q^{45}+374 q^{44}+169 q^{43}-25 q^{42}-296 q^{41}-358 q^{40}+392 q^{39}+292 q^{38}+113 q^{37}-343 q^{36}-535 q^{35}+358 q^{34}+372 q^{33}+243 q^{32}-347 q^{31}-651 q^{30}+298 q^{29}+401 q^{28}+339 q^{27}-311 q^{26}-694 q^{25}+215 q^{24}+373 q^{23}+392 q^{22}-224 q^{21}-649 q^{20}+106 q^{19}+278 q^{18}+386 q^{17}-101 q^{16}-507 q^{15}+12 q^{14}+135 q^{13}+302 q^{12}+9 q^{11}-307 q^{10}-26 q^9+15 q^8+174 q^7+49 q^6-138 q^5-8 q^4-31 q^3+66 q^2+33 q-47+13 q^{-1} -24 q^{-2} +16 q^{-3} +10 q^{-4} -17 q^{-5} +14 q^{-6} -8 q^{-7} +3 q^{-8} + q^{-9} -7 q^{-10} +6 q^{-11} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} </math> |

coloured_jones_5 = <math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+2 q^{102}-9 q^{101}-3 q^{100}+3 q^{99}+2 q^{98}+16 q^{97}+9 q^{96}-20 q^{95}-29 q^{94}-12 q^{93}+11 q^{92}+50 q^{91}+54 q^{90}-11 q^{89}-71 q^{88}-92 q^{87}-40 q^{86}+80 q^{85}+160 q^{84}+104 q^{83}-44 q^{82}-203 q^{81}-234 q^{80}-35 q^{79}+234 q^{78}+343 q^{77}+197 q^{76}-177 q^{75}-483 q^{74}-406 q^{73}+65 q^{72}+552 q^{71}+644 q^{70}+162 q^{69}-568 q^{68}-898 q^{67}-440 q^{66}+505 q^{65}+1102 q^{64}+761 q^{63}-335 q^{62}-1276 q^{61}-1109 q^{60}+146 q^{59}+1372 q^{58}+1410 q^{57}+124 q^{56}-1421 q^{55}-1719 q^{54}-342 q^{53}+1418 q^{52}+1924 q^{51}+616 q^{50}-1401 q^{49}-2136 q^{48}-787 q^{47}+1341 q^{46}+2242 q^{45}+1010 q^{44}-1285 q^{43}-2365 q^{42}-1124 q^{41}+1188 q^{40}+2378 q^{39}+1299 q^{38}-1078 q^{37}-2400 q^{36}-1382 q^{35}+916 q^{34}+2309 q^{33}+1499 q^{32}-720 q^{31}-2188 q^{30}-1539 q^{29}+489 q^{28}+1958 q^{27}+1549 q^{26}-241 q^{25}-1669 q^{24}-1482 q^{23}+q^{22}+1332 q^{21}+1338 q^{20}+193 q^{19}-970 q^{18}-1129 q^{17}-328 q^{16}+630 q^{15}+900 q^{14}+368 q^{13}-357 q^{12}-632 q^{11}-356 q^{10}+144 q^9+423 q^8+291 q^7-39 q^6-228 q^5-209 q^4-32 q^3+120 q^2+128 q+39-38 q^{-1} -71 q^{-2} -41 q^{-3} +17 q^{-4} +26 q^{-5} +19 q^{-6} +13 q^{-7} -13 q^{-8} -17 q^{-9} +2 q^{-10} -2 q^{-11} -2 q^{-12} +12 q^{-13} +2 q^{-14} -6 q^{-15} +3 q^{-16} -3 q^{-17} -5 q^{-18} +4 q^{-19} +2 q^{-20} - q^{-21} + q^{-22} -2 q^{-24} + q^{-25} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-3 q^{144}+11 q^{143}-q^{142}-2 q^{141}-13 q^{140}+12 q^{139}-14 q^{138}-8 q^{137}+36 q^{136}+14 q^{135}+4 q^{134}-42 q^{133}+9 q^{132}-56 q^{131}-40 q^{130}+78 q^{129}+73 q^{128}+74 q^{127}-47 q^{126}+18 q^{125}-169 q^{124}-189 q^{123}+32 q^{122}+127 q^{121}+245 q^{120}+106 q^{119}+225 q^{118}-239 q^{117}-465 q^{116}-296 q^{115}-103 q^{114}+287 q^{113}+379 q^{112}+870 q^{111}+139 q^{110}-498 q^{109}-797 q^{108}-869 q^{107}-338 q^{106}+251 q^{105}+1722 q^{104}+1220 q^{103}+356 q^{102}-797 q^{101}-1808 q^{100}-1854 q^{99}-973 q^{98}+1961 q^{97}+2517 q^{96}+2241 q^{95}+419 q^{94}-2012 q^{93}-3651 q^{92}-3328 q^{91}+884 q^{90}+3095 q^{89}+4451 q^{88}+2782 q^{87}-882 q^{86}-4793 q^{85}-6017 q^{84}-1336 q^{83}+2457 q^{82}+6087 q^{81}+5471 q^{80}+1273 q^{79}-4876 q^{78}-8170 q^{77}-3863 q^{76}+959 q^{75}+6803 q^{74}+7686 q^{73}+3621 q^{72}-4237 q^{71}-9459 q^{70}-5964 q^{69}-679 q^{68}+6860 q^{67}+9134 q^{66}+5537 q^{65}-3414 q^{64}-10060 q^{63}-7406 q^{62}-2014 q^{61}+6618 q^{60}+9940 q^{59}+6889 q^{58}-2632 q^{57}-10192 q^{56}-8327 q^{55}-3070 q^{54}+6131 q^{53}+10254 q^{52}+7867 q^{51}-1723 q^{50}-9805 q^{49}-8855 q^{48}-4092 q^{47}+5144 q^{46}+9955 q^{45}+8556 q^{44}-408 q^{43}-8580 q^{42}-8795 q^{41}-5116 q^{40}+3405 q^{39}+8681 q^{38}+8653 q^{37}+1237 q^{36}-6307 q^{35}-7713 q^{34}-5715 q^{33}+1143 q^{32}+6283 q^{31}+7664 q^{30}+2591 q^{29}-3415 q^{28}-5504 q^{27}-5290 q^{26}-813 q^{25}+3352 q^{24}+5548 q^{23}+2923 q^{22}-933 q^{21}-2863 q^{20}-3801 q^{19}-1647 q^{18}+976 q^{17}+3078 q^{16}+2182 q^{15}+326 q^{14}-831 q^{13}-2006 q^{12}-1377 q^{11}-174 q^{10}+1227 q^9+1096 q^8+480 q^7+99 q^6-724 q^5-722 q^4-356 q^3+333 q^2+346 q+231+252 q^{-1} -159 q^{-2} -254 q^{-3} -206 q^{-4} +67 q^{-5} +50 q^{-6} +41 q^{-7} +159 q^{-8} -11 q^{-9} -62 q^{-10} -79 q^{-11} +18 q^{-12} -10 q^{-13} -17 q^{-14} +69 q^{-15} +7 q^{-16} -8 q^{-17} -25 q^{-18} +10 q^{-19} -10 q^{-20} -18 q^{-21} +24 q^{-22} +3 q^{-23} +3 q^{-24} -7 q^{-25} +5 q^{-26} -3 q^{-27} -9 q^{-28} +6 q^{-29} +2 q^{-31} - q^{-32} + q^{-33} -2 q^{-35} + q^{-36} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],
X[11, 1, 12, 18], X[17, 13, 18, 12]]</nowiki></pre></td></tr>
X[11, 1, 12, 18], X[17, 13, 18, 12]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 15]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 10, 2, 18, 16, 6, 12]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 10, 2, 18, 16, 6, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 15]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_15_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 15]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 5}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 15]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 15]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 15]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_15_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 15]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 5}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 15]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 2
-15 - -- + -- + 10 t - 2 t
-15 - -- + -- + 10 t - 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 15]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 15]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 + 2 z - 2 z</nowiki></pre></td></tr>
1 + 2 z - 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15], Knot[10, 165], Knot[11, NonAlternating, 63],
Knot[11, NonAlternating, 101]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 101]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 15]], KnotSignature[Knot[9, 15]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 15]], KnotSignature[Knot[9, 15]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8
-2 + - + 4 q - 6 q + 7 q - 6 q + 6 q - 4 q + 2 q - q
-2 + - + 4 q - 6 q + 7 q - 6 q + 6 q - 4 q + 2 q - q
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 15]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 12 16 20 22 24 26

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 15]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 12 16 20 22 24 26
q + 2 q - 2 q + 2 q + 2 q - q + q - q - q</nowiki></pre></td></tr>
q + 2 q - 2 q + 2 q + 2 q - q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 15]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 15]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
-8 -6 -4 -2 2 2 z z z z
-8 -6 -4 -2 2 2 z z z z
1 - a + a + a - a + z + ---- - -- - -- - --
1 - a + a + a - a + z + ---- - -- - -- - --
6 2 4 2
6 2 4 2
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 15]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 15]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-8 -6 -4 -2 2 z z z z z 2 3 z
-8 -6 -4 -2 2 z z z z z 2 3 z
1 - a - a + a + a + --- + -- - -- + -- + - - 2 z + ---- +
1 - a - a + a + a + --- + -- - -- + -- + - - 2 z + ---- +
Line 174: Line 123:
3 6 4
3 6 4
a a a</nowiki></pre></td></tr>
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 15]], Vassiliev[3][Knot[9, 15]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 15]], Vassiliev[3][Knot[9, 15]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 15]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 q 3 5 5 2 7 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 15]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 q 3 5 5 2 7 2
3 q + 2 q + ----- + --- + - + 4 q t + 2 q t + 3 q t + 4 q t +
3 q + 2 q + ----- + --- + - + 4 q t + 2 q t + 3 q t + 4 q t +
3 2 q t t
3 2 q t t
Line 189: Line 136:
15 6 17 7
15 6 17 7
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 15], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 15], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 5 2 3 4 5 6 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 5 2 3 4 5 6 7
-8 + q - -- + - + q + 16 q - 21 q - q + 33 q - 33 q - 7 q +
-8 + q - -- + - + q + 16 q - 21 q - q + 33 q - 33 q - 7 q +
3 q
3 q
Line 201: Line 147:
16 17 18 19 20 22 23
16 17 18 19 20 22 23
14 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></pre></td></tr>
14 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:37, 30 August 2005

9 14.gif

9_14

9 16.gif

9_16

9 15.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 15 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12
Gauss code -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 14 10 2 18 16 6 12
Conway Notation [2322]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

9 15 ML.gif 9 15 AP.gif
[{11, 4}, {5, 2}, {4, 10}, {1, 5}, {6, 11}, {3, 7}, {2, 6}, {8, 3}, {7, 9}, {10, 8}, {9, 1}]

[edit Notes on presentations of 9 15]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 9.8855
A-Polynomial See Data:9 15/A-polynomial

[edit Notes for 9 15's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 15's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_165, K11n63, K11n101,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        1 1
13       31 -2
11      31  2
9     33   0
7    43    1
5   23     1
3  24      -2
1 13       2
-1 1        -1
-31         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials