8 9: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- --> |
|||
k = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-8,7,-3,6,-5,4,-2,8,-7/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=9|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-8,7,-3,6,-5,4,-2,8,-7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[10_155]], [[K11n37]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_155]], [[K11n37]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 70: | Line 34: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-2 q^{11}+5 q^9-6 q^8-2 q^7+12 q^6-10 q^5-7 q^4+20 q^3-12 q^2-11 q+25-11 q^{-1} -12 q^{-2} +20 q^{-3} -7 q^{-4} -10 q^{-5} +12 q^{-6} -2 q^{-7} -6 q^{-8} +5 q^{-9} -2 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>q^{24}-2 q^{23}+2 q^{21}+2 q^{20}-5 q^{19}-3 q^{18}+7 q^{17}+7 q^{16}-11 q^{15}-11 q^{14}+12 q^{13}+19 q^{12}-13 q^{11}-27 q^{10}+12 q^9+36 q^8-10 q^7-44 q^6+7 q^5+51 q^4-5 q^3-54 q^2+59-54 q^{-2} -5 q^{-3} +51 q^{-4} +7 q^{-5} -44 q^{-6} -10 q^{-7} +36 q^{-8} +12 q^{-9} -27 q^{-10} -13 q^{-11} +19 q^{-12} +12 q^{-13} -11 q^{-14} -11 q^{-15} +7 q^{-16} +7 q^{-17} -3 q^{-18} -5 q^{-19} +2 q^{-20} +2 q^{-21} -2 q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+5 q^9-6 q^8-2 q^7+12 q^6-10 q^5-7 q^4+20 q^3-12 q^2-11 q+25-11 q^{-1} -12 q^{-2} +20 q^{-3} -7 q^{-4} -10 q^{-5} +12 q^{-6} -2 q^{-7} -6 q^{-8} +5 q^{-9} -2 q^{-11} + q^{-12} </math>|J3=<math>q^{24}-2 q^{23}+2 q^{21}+2 q^{20}-5 q^{19}-3 q^{18}+7 q^{17}+7 q^{16}-11 q^{15}-11 q^{14}+12 q^{13}+19 q^{12}-13 q^{11}-27 q^{10}+12 q^9+36 q^8-10 q^7-44 q^6+7 q^5+51 q^4-5 q^3-54 q^2+59-54 q^{-2} -5 q^{-3} +51 q^{-4} +7 q^{-5} -44 q^{-6} -10 q^{-7} +36 q^{-8} +12 q^{-9} -27 q^{-10} -13 q^{-11} +19 q^{-12} +12 q^{-13} -11 q^{-14} -11 q^{-15} +7 q^{-16} +7 q^{-17} -3 q^{-18} -5 q^{-19} +2 q^{-20} +2 q^{-21} -2 q^{-23} + q^{-24} </math>|J4=<math>q^{40}-2 q^{39}+2 q^{37}-q^{36}+3 q^{35}-7 q^{34}+q^{33}+7 q^{32}-3 q^{31}+8 q^{30}-19 q^{29}-2 q^{28}+17 q^{27}+q^{26}+20 q^{25}-39 q^{24}-16 q^{23}+21 q^{22}+12 q^{21}+53 q^{20}-54 q^{19}-44 q^{18}+4 q^{17}+20 q^{16}+105 q^{15}-53 q^{14}-72 q^{13}-31 q^{12}+15 q^{11}+159 q^{10}-40 q^9-89 q^8-64 q^7+q^6+197 q^5-25 q^4-93 q^3-86 q^2-13 q+213-13 q^{-1} -86 q^{-2} -93 q^{-3} -25 q^{-4} +197 q^{-5} + q^{-6} -64 q^{-7} -89 q^{-8} -40 q^{-9} +159 q^{-10} +15 q^{-11} -31 q^{-12} -72 q^{-13} -53 q^{-14} +105 q^{-15} +20 q^{-16} +4 q^{-17} -44 q^{-18} -54 q^{-19} +53 q^{-20} +12 q^{-21} +21 q^{-22} -16 q^{-23} -39 q^{-24} +20 q^{-25} + q^{-26} +17 q^{-27} -2 q^{-28} -19 q^{-29} +8 q^{-30} -3 q^{-31} +7 q^{-32} + q^{-33} -7 q^{-34} +3 q^{-35} - q^{-36} +2 q^{-37} -2 q^{-39} + q^{-40} </math>|J5=<math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+q^{54}-3 q^{53}+6 q^{51}-5 q^{49}-2 q^{48}-5 q^{47}+2 q^{46}+14 q^{45}+9 q^{44}-7 q^{43}-16 q^{42}-19 q^{41}-3 q^{40}+28 q^{39}+34 q^{38}+12 q^{37}-24 q^{36}-55 q^{35}-37 q^{34}+19 q^{33}+67 q^{32}+70 q^{31}+9 q^{30}-78 q^{29}-110 q^{28}-45 q^{27}+71 q^{26}+147 q^{25}+100 q^{24}-52 q^{23}-182 q^{22}-156 q^{21}+19 q^{20}+204 q^{19}+216 q^{18}+21 q^{17}-217 q^{16}-268 q^{15}-64 q^{14}+221 q^{13}+312 q^{12}+101 q^{11}-218 q^{10}-341 q^9-138 q^8+211 q^7+370 q^6+158 q^5-206 q^4-372 q^3-183 q^2+188 q+393+188 q^{-1} -183 q^{-2} -372 q^{-3} -206 q^{-4} +158 q^{-5} +370 q^{-6} +211 q^{-7} -138 q^{-8} -341 q^{-9} -218 q^{-10} +101 q^{-11} +312 q^{-12} +221 q^{-13} -64 q^{-14} -268 q^{-15} -217 q^{-16} +21 q^{-17} +216 q^{-18} +204 q^{-19} +19 q^{-20} -156 q^{-21} -182 q^{-22} -52 q^{-23} +100 q^{-24} +147 q^{-25} +71 q^{-26} -45 q^{-27} -110 q^{-28} -78 q^{-29} +9 q^{-30} +70 q^{-31} +67 q^{-32} +19 q^{-33} -37 q^{-34} -55 q^{-35} -24 q^{-36} +12 q^{-37} +34 q^{-38} +28 q^{-39} -3 q^{-40} -19 q^{-41} -16 q^{-42} -7 q^{-43} +9 q^{-44} +14 q^{-45} +2 q^{-46} -5 q^{-47} -2 q^{-48} -5 q^{-49} +6 q^{-51} -3 q^{-53} + q^{-54} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math>|J6=<math>q^{84}-2 q^{83}+2 q^{81}-q^{80}-2 q^{78}+5 q^{77}-4 q^{76}-q^{75}+8 q^{74}-4 q^{73}-4 q^{72}-9 q^{71}+12 q^{70}-5 q^{69}+2 q^{68}+23 q^{67}-5 q^{66}-13 q^{65}-31 q^{64}+15 q^{63}-13 q^{62}+8 q^{61}+60 q^{60}+15 q^{59}-13 q^{58}-68 q^{57}-3 q^{56}-57 q^{55}-9 q^{54}+107 q^{53}+79 q^{52}+42 q^{51}-73 q^{50}-19 q^{49}-163 q^{48}-108 q^{47}+93 q^{46}+146 q^{45}+172 q^{44}+32 q^{43}+60 q^{42}-272 q^{41}-302 q^{40}-68 q^{39}+107 q^{38}+298 q^{37}+249 q^{36}+310 q^{35}-265 q^{34}-491 q^{33}-357 q^{32}-103 q^{31}+302 q^{30}+470 q^{29}+687 q^{28}-100 q^{27}-566 q^{26}-651 q^{25}-416 q^{24}+164 q^{23}+590 q^{22}+1052 q^{21}+143 q^{20}-522 q^{19}-847 q^{18}-696 q^{17}-31 q^{16}+605 q^{15}+1305 q^{14}+348 q^{13}-430 q^{12}-936 q^{11}-867 q^{10}-188 q^9+570 q^8+1436 q^7+466 q^6-349 q^5-959 q^4-941 q^3-283 q^2+525 q+1477+525 q^{-1} -283 q^{-2} -941 q^{-3} -959 q^{-4} -349 q^{-5} +466 q^{-6} +1436 q^{-7} +570 q^{-8} -188 q^{-9} -867 q^{-10} -936 q^{-11} -430 q^{-12} +348 q^{-13} +1305 q^{-14} +605 q^{-15} -31 q^{-16} -696 q^{-17} -847 q^{-18} -522 q^{-19} +143 q^{-20} +1052 q^{-21} +590 q^{-22} +164 q^{-23} -416 q^{-24} -651 q^{-25} -566 q^{-26} -100 q^{-27} +687 q^{-28} +470 q^{-29} +302 q^{-30} -103 q^{-31} -357 q^{-32} -491 q^{-33} -265 q^{-34} +310 q^{-35} +249 q^{-36} +298 q^{-37} +107 q^{-38} -68 q^{-39} -302 q^{-40} -272 q^{-41} +60 q^{-42} +32 q^{-43} +172 q^{-44} +146 q^{-45} +93 q^{-46} -108 q^{-47} -163 q^{-48} -19 q^{-49} -73 q^{-50} +42 q^{-51} +79 q^{-52} +107 q^{-53} -9 q^{-54} -57 q^{-55} -3 q^{-56} -68 q^{-57} -13 q^{-58} +15 q^{-59} +60 q^{-60} +8 q^{-61} -13 q^{-62} +15 q^{-63} -31 q^{-64} -13 q^{-65} -5 q^{-66} +23 q^{-67} +2 q^{-68} -5 q^{-69} +12 q^{-70} -9 q^{-71} -4 q^{-72} -4 q^{-73} +8 q^{-74} - q^{-75} -4 q^{-76} +5 q^{-77} -2 q^{-78} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math>|J7=<math>q^{112}-2 q^{111}+2 q^{109}-q^{108}-2 q^{106}+2 q^{105}+4 q^{104}-5 q^{103}+q^{102}+4 q^{101}-4 q^{100}-2 q^{99}-8 q^{98}+q^{97}+16 q^{96}-3 q^{95}+5 q^{94}+8 q^{93}-11 q^{92}-6 q^{91}-29 q^{90}-11 q^{89}+32 q^{88}+10 q^{87}+28 q^{86}+27 q^{85}-15 q^{84}-12 q^{83}-71 q^{82}-61 q^{81}+24 q^{80}+16 q^{79}+79 q^{78}+92 q^{77}+27 q^{76}+21 q^{75}-113 q^{74}-156 q^{73}-70 q^{72}-69 q^{71}+85 q^{70}+191 q^{69}+158 q^{68}+185 q^{67}-27 q^{66}-203 q^{65}-227 q^{64}-336 q^{63}-117 q^{62}+140 q^{61}+270 q^{60}+503 q^{59}+329 q^{58}+30 q^{57}-227 q^{56}-661 q^{55}-601 q^{54}-292 q^{53}+72 q^{52}+736 q^{51}+878 q^{50}+659 q^{49}+227 q^{48}-711 q^{47}-1129 q^{46}-1075 q^{45}-631 q^{44}+549 q^{43}+1283 q^{42}+1492 q^{41}+1138 q^{40}-257 q^{39}-1345 q^{38}-1870 q^{37}-1666 q^{36}-122 q^{35}+1287 q^{34}+2159 q^{33}+2185 q^{32}+554 q^{31}-1140 q^{30}-2362 q^{29}-2642 q^{28}-984 q^{27}+942 q^{26}+2477 q^{25}+3009 q^{24}+1367 q^{23}-721 q^{22}-2511 q^{21}-3289 q^{20}-1694 q^{19}+513 q^{18}+2513 q^{17}+3488 q^{16}+1926 q^{15}-347 q^{14}-2473 q^{13}-3596 q^{12}-2106 q^{11}+194 q^{10}+2437 q^9+3692 q^8+2217 q^7-126 q^6-2389 q^5-3694 q^4-2294 q^3+13 q^2+2343 q+3751+2343 q^{-1} +13 q^{-2} -2294 q^{-3} -3694 q^{-4} -2389 q^{-5} -126 q^{-6} +2217 q^{-7} +3692 q^{-8} +2437 q^{-9} +194 q^{-10} -2106 q^{-11} -3596 q^{-12} -2473 q^{-13} -347 q^{-14} +1926 q^{-15} +3488 q^{-16} +2513 q^{-17} +513 q^{-18} -1694 q^{-19} -3289 q^{-20} -2511 q^{-21} -721 q^{-22} +1367 q^{-23} +3009 q^{-24} +2477 q^{-25} +942 q^{-26} -984 q^{-27} -2642 q^{-28} -2362 q^{-29} -1140 q^{-30} +554 q^{-31} +2185 q^{-32} +2159 q^{-33} +1287 q^{-34} -122 q^{-35} -1666 q^{-36} -1870 q^{-37} -1345 q^{-38} -257 q^{-39} +1138 q^{-40} +1492 q^{-41} +1283 q^{-42} +549 q^{-43} -631 q^{-44} -1075 q^{-45} -1129 q^{-46} -711 q^{-47} +227 q^{-48} +659 q^{-49} +878 q^{-50} +736 q^{-51} +72 q^{-52} -292 q^{-53} -601 q^{-54} -661 q^{-55} -227 q^{-56} +30 q^{-57} +329 q^{-58} +503 q^{-59} +270 q^{-60} +140 q^{-61} -117 q^{-62} -336 q^{-63} -227 q^{-64} -203 q^{-65} -27 q^{-66} +185 q^{-67} +158 q^{-68} +191 q^{-69} +85 q^{-70} -69 q^{-71} -70 q^{-72} -156 q^{-73} -113 q^{-74} +21 q^{-75} +27 q^{-76} +92 q^{-77} +79 q^{-78} +16 q^{-79} +24 q^{-80} -61 q^{-81} -71 q^{-82} -12 q^{-83} -15 q^{-84} +27 q^{-85} +28 q^{-86} +10 q^{-87} +32 q^{-88} -11 q^{-89} -29 q^{-90} -6 q^{-91} -11 q^{-92} +8 q^{-93} +5 q^{-94} -3 q^{-95} +16 q^{-96} + q^{-97} -8 q^{-98} -2 q^{-99} -4 q^{-100} +4 q^{-101} + q^{-102} -5 q^{-103} +4 q^{-104} +2 q^{-105} -2 q^{-106} - q^{-108} +2 q^{-109} -2 q^{-111} + q^{-112} </math>}} |
|||
coloured_jones_4 = <math>q^{40}-2 q^{39}+2 q^{37}-q^{36}+3 q^{35}-7 q^{34}+q^{33}+7 q^{32}-3 q^{31}+8 q^{30}-19 q^{29}-2 q^{28}+17 q^{27}+q^{26}+20 q^{25}-39 q^{24}-16 q^{23}+21 q^{22}+12 q^{21}+53 q^{20}-54 q^{19}-44 q^{18}+4 q^{17}+20 q^{16}+105 q^{15}-53 q^{14}-72 q^{13}-31 q^{12}+15 q^{11}+159 q^{10}-40 q^9-89 q^8-64 q^7+q^6+197 q^5-25 q^4-93 q^3-86 q^2-13 q+213-13 q^{-1} -86 q^{-2} -93 q^{-3} -25 q^{-4} +197 q^{-5} + q^{-6} -64 q^{-7} -89 q^{-8} -40 q^{-9} +159 q^{-10} +15 q^{-11} -31 q^{-12} -72 q^{-13} -53 q^{-14} +105 q^{-15} +20 q^{-16} +4 q^{-17} -44 q^{-18} -54 q^{-19} +53 q^{-20} +12 q^{-21} +21 q^{-22} -16 q^{-23} -39 q^{-24} +20 q^{-25} + q^{-26} +17 q^{-27} -2 q^{-28} -19 q^{-29} +8 q^{-30} -3 q^{-31} +7 q^{-32} + q^{-33} -7 q^{-34} +3 q^{-35} - q^{-36} +2 q^{-37} -2 q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+q^{54}-3 q^{53}+6 q^{51}-5 q^{49}-2 q^{48}-5 q^{47}+2 q^{46}+14 q^{45}+9 q^{44}-7 q^{43}-16 q^{42}-19 q^{41}-3 q^{40}+28 q^{39}+34 q^{38}+12 q^{37}-24 q^{36}-55 q^{35}-37 q^{34}+19 q^{33}+67 q^{32}+70 q^{31}+9 q^{30}-78 q^{29}-110 q^{28}-45 q^{27}+71 q^{26}+147 q^{25}+100 q^{24}-52 q^{23}-182 q^{22}-156 q^{21}+19 q^{20}+204 q^{19}+216 q^{18}+21 q^{17}-217 q^{16}-268 q^{15}-64 q^{14}+221 q^{13}+312 q^{12}+101 q^{11}-218 q^{10}-341 q^9-138 q^8+211 q^7+370 q^6+158 q^5-206 q^4-372 q^3-183 q^2+188 q+393+188 q^{-1} -183 q^{-2} -372 q^{-3} -206 q^{-4} +158 q^{-5} +370 q^{-6} +211 q^{-7} -138 q^{-8} -341 q^{-9} -218 q^{-10} +101 q^{-11} +312 q^{-12} +221 q^{-13} -64 q^{-14} -268 q^{-15} -217 q^{-16} +21 q^{-17} +216 q^{-18} +204 q^{-19} +19 q^{-20} -156 q^{-21} -182 q^{-22} -52 q^{-23} +100 q^{-24} +147 q^{-25} +71 q^{-26} -45 q^{-27} -110 q^{-28} -78 q^{-29} +9 q^{-30} +70 q^{-31} +67 q^{-32} +19 q^{-33} -37 q^{-34} -55 q^{-35} -24 q^{-36} +12 q^{-37} +34 q^{-38} +28 q^{-39} -3 q^{-40} -19 q^{-41} -16 q^{-42} -7 q^{-43} +9 q^{-44} +14 q^{-45} +2 q^{-46} -5 q^{-47} -2 q^{-48} -5 q^{-49} +6 q^{-51} -3 q^{-53} + q^{-54} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-2 q^{83}+2 q^{81}-q^{80}-2 q^{78}+5 q^{77}-4 q^{76}-q^{75}+8 q^{74}-4 q^{73}-4 q^{72}-9 q^{71}+12 q^{70}-5 q^{69}+2 q^{68}+23 q^{67}-5 q^{66}-13 q^{65}-31 q^{64}+15 q^{63}-13 q^{62}+8 q^{61}+60 q^{60}+15 q^{59}-13 q^{58}-68 q^{57}-3 q^{56}-57 q^{55}-9 q^{54}+107 q^{53}+79 q^{52}+42 q^{51}-73 q^{50}-19 q^{49}-163 q^{48}-108 q^{47}+93 q^{46}+146 q^{45}+172 q^{44}+32 q^{43}+60 q^{42}-272 q^{41}-302 q^{40}-68 q^{39}+107 q^{38}+298 q^{37}+249 q^{36}+310 q^{35}-265 q^{34}-491 q^{33}-357 q^{32}-103 q^{31}+302 q^{30}+470 q^{29}+687 q^{28}-100 q^{27}-566 q^{26}-651 q^{25}-416 q^{24}+164 q^{23}+590 q^{22}+1052 q^{21}+143 q^{20}-522 q^{19}-847 q^{18}-696 q^{17}-31 q^{16}+605 q^{15}+1305 q^{14}+348 q^{13}-430 q^{12}-936 q^{11}-867 q^{10}-188 q^9+570 q^8+1436 q^7+466 q^6-349 q^5-959 q^4-941 q^3-283 q^2+525 q+1477+525 q^{-1} -283 q^{-2} -941 q^{-3} -959 q^{-4} -349 q^{-5} +466 q^{-6} +1436 q^{-7} +570 q^{-8} -188 q^{-9} -867 q^{-10} -936 q^{-11} -430 q^{-12} +348 q^{-13} +1305 q^{-14} +605 q^{-15} -31 q^{-16} -696 q^{-17} -847 q^{-18} -522 q^{-19} +143 q^{-20} +1052 q^{-21} +590 q^{-22} +164 q^{-23} -416 q^{-24} -651 q^{-25} -566 q^{-26} -100 q^{-27} +687 q^{-28} +470 q^{-29} +302 q^{-30} -103 q^{-31} -357 q^{-32} -491 q^{-33} -265 q^{-34} +310 q^{-35} +249 q^{-36} +298 q^{-37} +107 q^{-38} -68 q^{-39} -302 q^{-40} -272 q^{-41} +60 q^{-42} +32 q^{-43} +172 q^{-44} +146 q^{-45} +93 q^{-46} -108 q^{-47} -163 q^{-48} -19 q^{-49} -73 q^{-50} +42 q^{-51} +79 q^{-52} +107 q^{-53} -9 q^{-54} -57 q^{-55} -3 q^{-56} -68 q^{-57} -13 q^{-58} +15 q^{-59} +60 q^{-60} +8 q^{-61} -13 q^{-62} +15 q^{-63} -31 q^{-64} -13 q^{-65} -5 q^{-66} +23 q^{-67} +2 q^{-68} -5 q^{-69} +12 q^{-70} -9 q^{-71} -4 q^{-72} -4 q^{-73} +8 q^{-74} - q^{-75} -4 q^{-76} +5 q^{-77} -2 q^{-78} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math> | |
|||
coloured_jones_7 = <math>q^{112}-2 q^{111}+2 q^{109}-q^{108}-2 q^{106}+2 q^{105}+4 q^{104}-5 q^{103}+q^{102}+4 q^{101}-4 q^{100}-2 q^{99}-8 q^{98}+q^{97}+16 q^{96}-3 q^{95}+5 q^{94}+8 q^{93}-11 q^{92}-6 q^{91}-29 q^{90}-11 q^{89}+32 q^{88}+10 q^{87}+28 q^{86}+27 q^{85}-15 q^{84}-12 q^{83}-71 q^{82}-61 q^{81}+24 q^{80}+16 q^{79}+79 q^{78}+92 q^{77}+27 q^{76}+21 q^{75}-113 q^{74}-156 q^{73}-70 q^{72}-69 q^{71}+85 q^{70}+191 q^{69}+158 q^{68}+185 q^{67}-27 q^{66}-203 q^{65}-227 q^{64}-336 q^{63}-117 q^{62}+140 q^{61}+270 q^{60}+503 q^{59}+329 q^{58}+30 q^{57}-227 q^{56}-661 q^{55}-601 q^{54}-292 q^{53}+72 q^{52}+736 q^{51}+878 q^{50}+659 q^{49}+227 q^{48}-711 q^{47}-1129 q^{46}-1075 q^{45}-631 q^{44}+549 q^{43}+1283 q^{42}+1492 q^{41}+1138 q^{40}-257 q^{39}-1345 q^{38}-1870 q^{37}-1666 q^{36}-122 q^{35}+1287 q^{34}+2159 q^{33}+2185 q^{32}+554 q^{31}-1140 q^{30}-2362 q^{29}-2642 q^{28}-984 q^{27}+942 q^{26}+2477 q^{25}+3009 q^{24}+1367 q^{23}-721 q^{22}-2511 q^{21}-3289 q^{20}-1694 q^{19}+513 q^{18}+2513 q^{17}+3488 q^{16}+1926 q^{15}-347 q^{14}-2473 q^{13}-3596 q^{12}-2106 q^{11}+194 q^{10}+2437 q^9+3692 q^8+2217 q^7-126 q^6-2389 q^5-3694 q^4-2294 q^3+13 q^2+2343 q+3751+2343 q^{-1} +13 q^{-2} -2294 q^{-3} -3694 q^{-4} -2389 q^{-5} -126 q^{-6} +2217 q^{-7} +3692 q^{-8} +2437 q^{-9} +194 q^{-10} -2106 q^{-11} -3596 q^{-12} -2473 q^{-13} -347 q^{-14} +1926 q^{-15} +3488 q^{-16} +2513 q^{-17} +513 q^{-18} -1694 q^{-19} -3289 q^{-20} -2511 q^{-21} -721 q^{-22} +1367 q^{-23} +3009 q^{-24} +2477 q^{-25} +942 q^{-26} -984 q^{-27} -2642 q^{-28} -2362 q^{-29} -1140 q^{-30} +554 q^{-31} +2185 q^{-32} +2159 q^{-33} +1287 q^{-34} -122 q^{-35} -1666 q^{-36} -1870 q^{-37} -1345 q^{-38} -257 q^{-39} +1138 q^{-40} +1492 q^{-41} +1283 q^{-42} +549 q^{-43} -631 q^{-44} -1075 q^{-45} -1129 q^{-46} -711 q^{-47} +227 q^{-48} +659 q^{-49} +878 q^{-50} +736 q^{-51} +72 q^{-52} -292 q^{-53} -601 q^{-54} -661 q^{-55} -227 q^{-56} +30 q^{-57} +329 q^{-58} +503 q^{-59} +270 q^{-60} +140 q^{-61} -117 q^{-62} -336 q^{-63} -227 q^{-64} -203 q^{-65} -27 q^{-66} +185 q^{-67} +158 q^{-68} +191 q^{-69} +85 q^{-70} -69 q^{-71} -70 q^{-72} -156 q^{-73} -113 q^{-74} +21 q^{-75} +27 q^{-76} +92 q^{-77} +79 q^{-78} +16 q^{-79} +24 q^{-80} -61 q^{-81} -71 q^{-82} -12 q^{-83} -15 q^{-84} +27 q^{-85} +28 q^{-86} +10 q^{-87} +32 q^{-88} -11 q^{-89} -29 q^{-90} -6 q^{-91} -11 q^{-92} +8 q^{-93} +5 q^{-94} -3 q^{-95} +16 q^{-96} + q^{-97} -8 q^{-98} -2 q^{-99} -4 q^{-100} +4 q^{-101} + q^{-102} -5 q^{-103} +4 q^{-104} +2 q^{-105} -2 q^{-106} - q^{-108} +2 q^{-109} -2 q^{-111} + q^{-112} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 8, 15, 7], X[10, 3, 11, 4], X[2, 13, 3, 14], |
|||
X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]]</nowiki></pre></td></tr> |
X[12, 5, 13, 6], X[4, 11, 5, 12], X[16, 10, 1, 9], X[8, 16, 9, 15]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 12, 14, 16, 4, 2, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 1, 3, 2, {3, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 9]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 9]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 1, 3, 2, {3, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 9]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 5 2 3 |
|||
7 - t + -- - - - 5 t + 3 t - t |
7 - t + -- - - - 5 t + 3 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 9]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 2 z - 3 z - z</nowiki></pre></td></tr> |
1 - 2 z - 3 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 9]], KnotSignature[Knot[8, 9]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 3 4 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 3 4 2 3 4 |
|||
5 + q - -- + -- - - - 4 q + 3 q - 2 q + q |
5 + q - -- + -- - - - 4 q + 3 q - 2 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 9]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 9]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 -4 -2 2 4 8 12 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 9]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 -4 -2 2 4 8 12 |
|||
-1 + q + q - q + q + q - q + q + q</nowiki></pre></td></tr> |
-1 + q + q - q + q + q - q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
2 2 2 3 z 2 2 4 z 2 4 6 |
2 2 2 3 z 2 2 4 z 2 4 6 |
||
-3 + -- + 2 a - 8 z + ---- + 3 a z - 5 z + -- + a z - z |
-3 + -- + 2 a - 8 z + ---- + 3 a z - 5 z + -- + a z - z |
||
2 2 2 |
2 2 2 |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 9]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
2 2 z z 3 2 2 z 4 z 2 2 |
2 2 z z 3 2 2 z 4 z 2 2 |
||
-3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z - |
-3 - -- - 2 a + -- + - + a z + a z + 12 z - ---- + ---- + 4 a z - |
||
Line 162: | Line 111: | ||
3 2 a |
3 2 a |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 9]], Vassiliev[3][Knot[8, 9]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 9]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 2 1 2 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 9]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 2 1 2 2 |
|||
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t + |
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 174: | Line 121: | ||
3 3 2 5 2 5 3 7 3 9 4 |
3 3 2 5 2 5 3 7 3 9 4 |
||
2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr> |
2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 9], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 5 6 2 12 10 7 20 12 11 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 5 6 2 12 10 7 20 12 11 |
|||
25 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 11 q - |
25 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 11 q - |
||
11 9 8 7 6 5 4 3 2 q |
11 9 8 7 6 5 4 3 2 q |
||
Line 186: | Line 132: | ||
12 |
12 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:38, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X14,8,15,7 X10,3,11,4 X2,13,3,14 X12,5,13,6 X4,11,5,12 X16,10,1,9 X8,16,9,15 |
Gauss code | 1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7 |
Dowker-Thistlethwaite code | 6 10 12 14 16 4 2 8 |
Conway Notation | [3113] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{2, 10}, {1, 5}, {9, 4}, {10, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 8}, {7, 9}, {8, 1}] |
[edit Notes on presentations of 8 9]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 9"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,8,15,7 X10,3,11,4 X2,13,3,14 X12,5,13,6 X4,11,5,12 X16,10,1,9 X8,16,9,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 12 14 16 4 2 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3113] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 10}, {1, 5}, {9, 4}, {10, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 8}, {7, 9}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 9"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_155, K11n37,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 9"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_155, K11n37,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|