10 157: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 157 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,-9,2,-10,8,1,-4,5,9,-2,3,7,-6,4,-5,-3,10,-8,-7,6/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=157|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,-9,2,-10,8,1,-4,5,9,-2,3,7,-6,4,-5,-3,10,-8,-7,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=7.69231%>6</td ><td width=7.69231%>7</td ><td width=7.69231%>8</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
||
Line 70: | Line 34: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{28}-4 q^{27}+2 q^{26}+12 q^{25}-21 q^{24}+40 q^{22}-43 q^{21}-15 q^{20}+72 q^{19}-53 q^{18}-33 q^{17}+88 q^{16}-47 q^{15}-43 q^{14}+79 q^{13}-28 q^{12}-41 q^{11}+51 q^{10}-7 q^9-26 q^8+19 q^7+3 q^6-8 q^5+2 q^4+q^3</math> | |
|||
coloured_jones_3 = <math>q^{54}-4 q^{53}+2 q^{52}+8 q^{51}-q^{50}-20 q^{49}-6 q^{48}+48 q^{47}+12 q^{46}-76 q^{45}-46 q^{44}+120 q^{43}+93 q^{42}-152 q^{41}-166 q^{40}+180 q^{39}+239 q^{38}-180 q^{37}-320 q^{36}+172 q^{35}+384 q^{34}-148 q^{33}-427 q^{32}+112 q^{31}+454 q^{30}-80 q^{29}-452 q^{28}+32 q^{27}+441 q^{26}+4 q^{25}-398 q^{24}-52 q^{23}+350 q^{22}+84 q^{21}-277 q^{20}-116 q^{19}+209 q^{18}+116 q^{17}-127 q^{16}-112 q^{15}+69 q^{14}+84 q^{13}-22 q^{12}-56 q^{11}+3 q^{10}+24 q^9+10 q^8-12 q^7-2 q^6+2 q^4</math> | |
|||
{{Display Coloured Jones|J2=<math>q^{28}-4 q^{27}+2 q^{26}+12 q^{25}-21 q^{24}+40 q^{22}-43 q^{21}-15 q^{20}+72 q^{19}-53 q^{18}-33 q^{17}+88 q^{16}-47 q^{15}-43 q^{14}+79 q^{13}-28 q^{12}-41 q^{11}+51 q^{10}-7 q^9-26 q^8+19 q^7+3 q^6-8 q^5+2 q^4+q^3</math>|J3=<math>q^{54}-4 q^{53}+2 q^{52}+8 q^{51}-q^{50}-20 q^{49}-6 q^{48}+48 q^{47}+12 q^{46}-76 q^{45}-46 q^{44}+120 q^{43}+93 q^{42}-152 q^{41}-166 q^{40}+180 q^{39}+239 q^{38}-180 q^{37}-320 q^{36}+172 q^{35}+384 q^{34}-148 q^{33}-427 q^{32}+112 q^{31}+454 q^{30}-80 q^{29}-452 q^{28}+32 q^{27}+441 q^{26}+4 q^{25}-398 q^{24}-52 q^{23}+350 q^{22}+84 q^{21}-277 q^{20}-116 q^{19}+209 q^{18}+116 q^{17}-127 q^{16}-112 q^{15}+69 q^{14}+84 q^{13}-22 q^{12}-56 q^{11}+3 q^{10}+24 q^9+10 q^8-12 q^7-2 q^6+2 q^4</math>|J4=<math>q^{88}-4 q^{87}+2 q^{86}+8 q^{85}-5 q^{84}-26 q^{82}+12 q^{81}+49 q^{80}-7 q^{79}-8 q^{78}-128 q^{77}+10 q^{76}+190 q^{75}+77 q^{74}-6 q^{73}-427 q^{72}-144 q^{71}+418 q^{70}+425 q^{69}+212 q^{68}-910 q^{67}-676 q^{66}+470 q^{65}+1014 q^{64}+867 q^{63}-1256 q^{62}-1492 q^{61}+94 q^{60}+1491 q^{59}+1803 q^{58}-1204 q^{57}-2184 q^{56}-555 q^{55}+1597 q^{54}+2587 q^{53}-857 q^{52}-2482 q^{51}-1143 q^{50}+1399 q^{49}+2981 q^{48}-434 q^{47}-2416 q^{46}-1523 q^{45}+1034 q^{44}+3000 q^{43}+8 q^{42}-2064 q^{41}-1729 q^{40}+527 q^{39}+2696 q^{38}+468 q^{37}-1448 q^{36}-1728 q^{35}-79 q^{34}+2050 q^{33}+815 q^{32}-651 q^{31}-1408 q^{30}-569 q^{29}+1159 q^{28}+822 q^{27}+35 q^{26}-798 q^{25}-666 q^{24}+357 q^{23}+482 q^{22}+301 q^{21}-224 q^{20}-397 q^{19}-25 q^{18}+118 q^{17}+193 q^{16}+24 q^{15}-107 q^{14}-51 q^{13}-16 q^{12}+42 q^{11}+26 q^{10}-5 q^9-6 q^8-8 q^7+2 q^5+q^4</math>|J5=<math>q^{130}-4 q^{129}+2 q^{128}+8 q^{127}-5 q^{126}-4 q^{125}-6 q^{124}-8 q^{123}+13 q^{122}+40 q^{121}+7 q^{120}-48 q^{119}-68 q^{118}-36 q^{117}+78 q^{116}+176 q^{115}+129 q^{114}-144 q^{113}-396 q^{112}-296 q^{111}+160 q^{110}+692 q^{109}+758 q^{108}-32 q^{107}-1179 q^{106}-1484 q^{105}-360 q^{104}+1536 q^{103}+2631 q^{102}+1328 q^{101}-1790 q^{100}-4008 q^{99}-2845 q^{98}+1456 q^{97}+5463 q^{96}+5012 q^{95}-525 q^{94}-6636 q^{93}-7500 q^{92}-1220 q^{91}+7330 q^{90}+10060 q^{89}+3465 q^{88}-7288 q^{87}-12315 q^{86}-6064 q^{85}+6636 q^{84}+14056 q^{83}+8554 q^{82}-5472 q^{81}-15120 q^{80}-10780 q^{79}+4067 q^{78}+15596 q^{77}+12534 q^{76}-2640 q^{75}-15570 q^{74}-13752 q^{73}+1245 q^{72}+15184 q^{71}+14605 q^{70}-36 q^{69}-14562 q^{68}-15012 q^{67}-1153 q^{66}+13668 q^{65}+15268 q^{64}+2264 q^{63}-12593 q^{62}-15168 q^{61}-3474 q^{60}+11160 q^{59}+14932 q^{58}+4676 q^{57}-9438 q^{56}-14260 q^{55}-5929 q^{54}+7328 q^{53}+13278 q^{52}+6968 q^{51}-4999 q^{50}-11680 q^{49}-7766 q^{48}+2536 q^{47}+9739 q^{46}+7944 q^{45}-277 q^{44}-7304 q^{43}-7553 q^{42}-1616 q^{41}+4886 q^{40}+6480 q^{39}+2752 q^{38}-2520 q^{37}-4995 q^{36}-3196 q^{35}+731 q^{34}+3312 q^{33}+2912 q^{32}+472 q^{31}-1811 q^{30}-2228 q^{29}-931 q^{28}+644 q^{27}+1392 q^{26}+968 q^{25}-31 q^{24}-692 q^{23}-645 q^{22}-244 q^{21}+206 q^{20}+392 q^{19}+208 q^{18}-20 q^{17}-119 q^{16}-132 q^{15}-56 q^{14}+40 q^{13}+50 q^{12}+20 q^{11}+12 q^{10}-12 q^9-12 q^8-4 q^7+2 q^6+2 q^4</math>|J6=<math>q^{180}-4 q^{179}+2 q^{178}+8 q^{177}-5 q^{176}-4 q^{175}-10 q^{174}+12 q^{173}-7 q^{172}+4 q^{171}+54 q^{170}-23 q^{169}-42 q^{168}-72 q^{167}+22 q^{166}+18 q^{165}+82 q^{164}+242 q^{163}-33 q^{162}-233 q^{161}-432 q^{160}-122 q^{159}+44 q^{158}+532 q^{157}+1136 q^{156}+375 q^{155}-635 q^{154}-1858 q^{153}-1498 q^{152}-738 q^{151}+1514 q^{150}+4165 q^{149}+3305 q^{148}+245 q^{147}-4664 q^{146}-6522 q^{145}-5907 q^{144}+492 q^{143}+9607 q^{142}+12440 q^{141}+7851 q^{140}-4772 q^{139}-15172 q^{138}-20327 q^{137}-10039 q^{136}+11363 q^{135}+26952 q^{134}+27751 q^{133}+7321 q^{132}-19168 q^{131}-41613 q^{130}-35477 q^{129}-1507 q^{128}+36190 q^{127}+55289 q^{126}+36015 q^{125}-7024 q^{124}-56897 q^{123}-68439 q^{122}-31478 q^{121}+28728 q^{120}+75833 q^{119}+71323 q^{118}+21409 q^{117}-55373 q^{116}-93295 q^{115}-66512 q^{114}+6293 q^{113}+79713 q^{112}+97693 q^{111}+53183 q^{110}-40029 q^{109}-101865 q^{108}-92216 q^{107}-18737 q^{106}+70654 q^{105}+108799 q^{104}+76099 q^{103}-21737 q^{102}-98220 q^{101}-104362 q^{100}-37053 q^{99}+57754 q^{98}+108943 q^{97}+88039 q^{96}-7037 q^{95}-89700 q^{94}-107403 q^{93}-48452 q^{92}+45298 q^{91}+104011 q^{90}+93541 q^{89}+5215 q^{88}-78860 q^{87}-106041 q^{86}-57406 q^{85}+31280 q^{84}+95245 q^{83}+96289 q^{82}+19181 q^{81}-63132 q^{80}-100371 q^{79}-66484 q^{78}+12007 q^{77}+79493 q^{76}+95107 q^{75}+36077 q^{74}-39273 q^{73}-86366 q^{72}-72738 q^{71}-12199 q^{70}+53631 q^{69}+84565 q^{68}+50703 q^{67}-9097 q^{66}-60604 q^{65}-68737 q^{64}-33761 q^{63}+20663 q^{62}+60674 q^{61}+53494 q^{60}+17637 q^{59}-27130 q^{58}-49863 q^{57}-41435 q^{56}-7905 q^{55}+28632 q^{54}+39725 q^{53}+28729 q^{52}+1116 q^{51}-22563 q^{50}-31324 q^{49}-19813 q^{48}+2516 q^{47}+17447 q^{46}+21868 q^{45}+12529 q^{44}-1437 q^{43}-13298 q^{42}-14847 q^{41}-7415 q^{40}+1217 q^{39}+8362 q^{38}+9085 q^{37}+5334 q^{36}-1188 q^{35}-5035 q^{34}-5090 q^{33}-3104 q^{32}+352 q^{31}+2537 q^{30}+3116 q^{29}+1525 q^{28}-85 q^{27}-1102 q^{26}-1458 q^{25}-879 q^{24}-117 q^{23}+572 q^{22}+554 q^{21}+384 q^{20}+116 q^{19}-152 q^{18}-227 q^{17}-174 q^{16}-24 q^{15}+24 q^{14}+56 q^{13}+52 q^{12}+26 q^{11}-5 q^{10}-16 q^9-8 q^8-6 q^7+2 q^4+q^3</math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{88}-4 q^{87}+2 q^{86}+8 q^{85}-5 q^{84}-26 q^{82}+12 q^{81}+49 q^{80}-7 q^{79}-8 q^{78}-128 q^{77}+10 q^{76}+190 q^{75}+77 q^{74}-6 q^{73}-427 q^{72}-144 q^{71}+418 q^{70}+425 q^{69}+212 q^{68}-910 q^{67}-676 q^{66}+470 q^{65}+1014 q^{64}+867 q^{63}-1256 q^{62}-1492 q^{61}+94 q^{60}+1491 q^{59}+1803 q^{58}-1204 q^{57}-2184 q^{56}-555 q^{55}+1597 q^{54}+2587 q^{53}-857 q^{52}-2482 q^{51}-1143 q^{50}+1399 q^{49}+2981 q^{48}-434 q^{47}-2416 q^{46}-1523 q^{45}+1034 q^{44}+3000 q^{43}+8 q^{42}-2064 q^{41}-1729 q^{40}+527 q^{39}+2696 q^{38}+468 q^{37}-1448 q^{36}-1728 q^{35}-79 q^{34}+2050 q^{33}+815 q^{32}-651 q^{31}-1408 q^{30}-569 q^{29}+1159 q^{28}+822 q^{27}+35 q^{26}-798 q^{25}-666 q^{24}+357 q^{23}+482 q^{22}+301 q^{21}-224 q^{20}-397 q^{19}-25 q^{18}+118 q^{17}+193 q^{16}+24 q^{15}-107 q^{14}-51 q^{13}-16 q^{12}+42 q^{11}+26 q^{10}-5 q^9-6 q^8-8 q^7+2 q^5+q^4</math> | |
|||
coloured_jones_5 = <math>q^{130}-4 q^{129}+2 q^{128}+8 q^{127}-5 q^{126}-4 q^{125}-6 q^{124}-8 q^{123}+13 q^{122}+40 q^{121}+7 q^{120}-48 q^{119}-68 q^{118}-36 q^{117}+78 q^{116}+176 q^{115}+129 q^{114}-144 q^{113}-396 q^{112}-296 q^{111}+160 q^{110}+692 q^{109}+758 q^{108}-32 q^{107}-1179 q^{106}-1484 q^{105}-360 q^{104}+1536 q^{103}+2631 q^{102}+1328 q^{101}-1790 q^{100}-4008 q^{99}-2845 q^{98}+1456 q^{97}+5463 q^{96}+5012 q^{95}-525 q^{94}-6636 q^{93}-7500 q^{92}-1220 q^{91}+7330 q^{90}+10060 q^{89}+3465 q^{88}-7288 q^{87}-12315 q^{86}-6064 q^{85}+6636 q^{84}+14056 q^{83}+8554 q^{82}-5472 q^{81}-15120 q^{80}-10780 q^{79}+4067 q^{78}+15596 q^{77}+12534 q^{76}-2640 q^{75}-15570 q^{74}-13752 q^{73}+1245 q^{72}+15184 q^{71}+14605 q^{70}-36 q^{69}-14562 q^{68}-15012 q^{67}-1153 q^{66}+13668 q^{65}+15268 q^{64}+2264 q^{63}-12593 q^{62}-15168 q^{61}-3474 q^{60}+11160 q^{59}+14932 q^{58}+4676 q^{57}-9438 q^{56}-14260 q^{55}-5929 q^{54}+7328 q^{53}+13278 q^{52}+6968 q^{51}-4999 q^{50}-11680 q^{49}-7766 q^{48}+2536 q^{47}+9739 q^{46}+7944 q^{45}-277 q^{44}-7304 q^{43}-7553 q^{42}-1616 q^{41}+4886 q^{40}+6480 q^{39}+2752 q^{38}-2520 q^{37}-4995 q^{36}-3196 q^{35}+731 q^{34}+3312 q^{33}+2912 q^{32}+472 q^{31}-1811 q^{30}-2228 q^{29}-931 q^{28}+644 q^{27}+1392 q^{26}+968 q^{25}-31 q^{24}-692 q^{23}-645 q^{22}-244 q^{21}+206 q^{20}+392 q^{19}+208 q^{18}-20 q^{17}-119 q^{16}-132 q^{15}-56 q^{14}+40 q^{13}+50 q^{12}+20 q^{11}+12 q^{10}-12 q^9-12 q^8-4 q^7+2 q^6+2 q^4</math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{180}-4 q^{179}+2 q^{178}+8 q^{177}-5 q^{176}-4 q^{175}-10 q^{174}+12 q^{173}-7 q^{172}+4 q^{171}+54 q^{170}-23 q^{169}-42 q^{168}-72 q^{167}+22 q^{166}+18 q^{165}+82 q^{164}+242 q^{163}-33 q^{162}-233 q^{161}-432 q^{160}-122 q^{159}+44 q^{158}+532 q^{157}+1136 q^{156}+375 q^{155}-635 q^{154}-1858 q^{153}-1498 q^{152}-738 q^{151}+1514 q^{150}+4165 q^{149}+3305 q^{148}+245 q^{147}-4664 q^{146}-6522 q^{145}-5907 q^{144}+492 q^{143}+9607 q^{142}+12440 q^{141}+7851 q^{140}-4772 q^{139}-15172 q^{138}-20327 q^{137}-10039 q^{136}+11363 q^{135}+26952 q^{134}+27751 q^{133}+7321 q^{132}-19168 q^{131}-41613 q^{130}-35477 q^{129}-1507 q^{128}+36190 q^{127}+55289 q^{126}+36015 q^{125}-7024 q^{124}-56897 q^{123}-68439 q^{122}-31478 q^{121}+28728 q^{120}+75833 q^{119}+71323 q^{118}+21409 q^{117}-55373 q^{116}-93295 q^{115}-66512 q^{114}+6293 q^{113}+79713 q^{112}+97693 q^{111}+53183 q^{110}-40029 q^{109}-101865 q^{108}-92216 q^{107}-18737 q^{106}+70654 q^{105}+108799 q^{104}+76099 q^{103}-21737 q^{102}-98220 q^{101}-104362 q^{100}-37053 q^{99}+57754 q^{98}+108943 q^{97}+88039 q^{96}-7037 q^{95}-89700 q^{94}-107403 q^{93}-48452 q^{92}+45298 q^{91}+104011 q^{90}+93541 q^{89}+5215 q^{88}-78860 q^{87}-106041 q^{86}-57406 q^{85}+31280 q^{84}+95245 q^{83}+96289 q^{82}+19181 q^{81}-63132 q^{80}-100371 q^{79}-66484 q^{78}+12007 q^{77}+79493 q^{76}+95107 q^{75}+36077 q^{74}-39273 q^{73}-86366 q^{72}-72738 q^{71}-12199 q^{70}+53631 q^{69}+84565 q^{68}+50703 q^{67}-9097 q^{66}-60604 q^{65}-68737 q^{64}-33761 q^{63}+20663 q^{62}+60674 q^{61}+53494 q^{60}+17637 q^{59}-27130 q^{58}-49863 q^{57}-41435 q^{56}-7905 q^{55}+28632 q^{54}+39725 q^{53}+28729 q^{52}+1116 q^{51}-22563 q^{50}-31324 q^{49}-19813 q^{48}+2516 q^{47}+17447 q^{46}+21868 q^{45}+12529 q^{44}-1437 q^{43}-13298 q^{42}-14847 q^{41}-7415 q^{40}+1217 q^{39}+8362 q^{38}+9085 q^{37}+5334 q^{36}-1188 q^{35}-5035 q^{34}-5090 q^{33}-3104 q^{32}+352 q^{31}+2537 q^{30}+3116 q^{29}+1525 q^{28}-85 q^{27}-1102 q^{26}-1458 q^{25}-879 q^{24}-117 q^{23}+572 q^{22}+554 q^{21}+384 q^{20}+116 q^{19}-152 q^{18}-227 q^{17}-174 q^{16}-24 q^{15}+24 q^{14}+56 q^{13}+52 q^{12}+26 q^{11}-5 q^{10}-16 q^9-8 q^8-6 q^7+2 q^4+q^3</math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 157]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 157]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[10, 4, 11, 3], X[16, 11, 17, 12], X[7, 15, 8, 14], |
|||
X[15, 9, 16, 8], X[13, 1, 14, 20], X[19, 13, 20, 12], |
X[15, 9, 16, 8], X[13, 1, 14, 20], X[19, 13, 20, 12], |
||
X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]]</nowiki></pre></td></tr> |
X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 157]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, |
|||
-8, -7, 6]</nowiki></pre></td></tr> |
-8, -7, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 157]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, -10, -18, 14, -2, -16, 20, 8, -4, 12]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 157]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 2, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 157]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 157]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_157_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 157]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 157]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 6 11 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 157]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_157_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 157]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 157]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 6 11 2 3 |
|||
13 - t + -- - -- - 11 t + 6 t - t |
13 - t + -- - -- - 11 t + 6 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 157]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 |
|||
1 + 4 z - z</nowiki></pre></td></tr> |
1 + 4 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 157]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 157]], KnotSignature[Knot[10, 157]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{49, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 157]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 157]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 |
|||
2 q - 4 q + 7 q - 8 q + 9 q - 8 q + 6 q - 4 q + q</nowiki></pre></td></tr> |
2 q - 4 q + 7 q - 8 q + 9 q - 8 q + 6 q - 4 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 157]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 157]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 16 18 20 22 24 28 30 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 157]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 16 18 20 22 24 28 30 |
|||
2 q - q + 2 q + 3 q - q + 2 q - 2 q - q - 2 q + q</nowiki></pre></td></tr> |
2 q - q + 2 q + 3 q - q + 2 q - 2 q - q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 157]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 |
|||
-8 2 z 2 z 5 z z 3 z 2 z z |
-8 2 z 2 z 5 z z 3 z 2 z z |
||
-a + -- + -- - ---- + ---- + -- - ---- + ---- - -- |
-a + -- + -- - ---- + ---- + -- - ---- + ---- - -- |
||
4 8 6 4 8 6 4 6 |
4 8 6 4 8 6 4 6 |
||
a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 157]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 3 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 3 3 |
|||
-8 2 4 z 4 z 2 z 7 z 5 z 4 z 8 z 6 z |
-8 2 4 z 4 z 2 z 7 z 5 z 4 z 8 z 6 z |
||
-a + -- + --- + --- + ---- + ---- - ---- - ---- - ---- - ---- - |
-a + -- + --- + --- + ---- + ---- - ---- - ---- - ---- - ---- - |
||
Line 164: | Line 113: | ||
8 6 9 7 5 8 6 |
8 6 9 7 5 8 6 |
||
a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 157]], Vassiliev[3][Knot[10, 157]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 8}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 157]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 7 7 2 9 2 9 3 11 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 157]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 7 7 2 9 2 9 3 11 3 |
|||
2 q + q + 3 q t + q t + 4 q t + 3 q t + 4 q t + 4 q t + |
2 q + q + 3 q t + q t + 4 q t + 3 q t + 4 q t + 4 q t + |
||
Line 177: | Line 124: | ||
17 7 19 7 21 8 |
17 7 19 7 21 8 |
||
q t + 3 q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 157], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 |
|||
q + 2 q - 8 q + 3 q + 19 q - 26 q - 7 q + 51 q - 41 q - |
q + 2 q - 8 q + 3 q + 19 q - 26 q - 7 q + 51 q - 41 q - |
||
Line 190: | Line 136: | ||
28 |
28 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:41, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 157's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
Gauss code | -1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6 |
Dowker-Thistlethwaite code | 6 -10 -18 14 -2 -16 20 8 -4 12 |
Conway Notation | [-3:20:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{4, 10}, {6, 9}, {5, 8}, {3, 6}, {11, 4}, {9, 2}, {10, 7}, {8, 3}, {7, 1}, {2, 11}, {1, 5}] |
[edit Notes on presentations of 10 157]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 -10 -18 14 -2 -16 20 8 -4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-3:20:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 10}, {6, 9}, {5, 8}, {3, 6}, {11, 4}, {9, 2}, {10, 7}, {8, 3}, {7, 1}, {2, 11}, {1, 5}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 157"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 8) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|