9 8: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 8 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-5,6,-8,3,-6,5,-7,4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=8|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-5,6,-8,3,-6,5,-7,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = [[8_14]], [[10_131]], |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = [[K11n60]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[8_14]], [[10_131]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n60]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 73: Line 37:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{10}-2 q^9-q^8+6 q^7-4 q^6-6 q^5+12 q^4-3 q^3-13 q^2+16 q+1-19 q^{-1} +17 q^{-2} +5 q^{-3} -22 q^{-4} +15 q^{-5} +8 q^{-6} -20 q^{-7} +11 q^{-8} +6 q^{-9} -13 q^{-10} +7 q^{-11} +2 q^{-12} -6 q^{-13} +4 q^{-14} -2 q^{-16} + q^{-17} </math> |

coloured_jones_3 = <math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+5 q^{17}-3 q^{16}-9 q^{15}+q^{14}+14 q^{13}+2 q^{12}-16 q^{11}-9 q^{10}+19 q^9+14 q^8-17 q^7-20 q^6+13 q^5+24 q^4-8 q^3-26 q^2+3 q+26+4 q^{-1} -25 q^{-2} -9 q^{-3} +22 q^{-4} +16 q^{-5} -21 q^{-6} -19 q^{-7} +15 q^{-8} +26 q^{-9} -14 q^{-10} -24 q^{-11} +6 q^{-12} +27 q^{-13} -7 q^{-14} -17 q^{-15} - q^{-16} +15 q^{-17} -2 q^{-18} -6 q^{-19} + q^{-20} +2 q^{-21} -3 q^{-22} +2 q^{-23} +3 q^{-24} -3 q^{-25} -3 q^{-26} +2 q^{-27} +4 q^{-28} -3 q^{-29} - q^{-30} +2 q^{-32} - q^{-33} </math> |
{{Display Coloured Jones|J2=<math>q^{10}-2 q^9-q^8+6 q^7-4 q^6-6 q^5+12 q^4-3 q^3-13 q^2+16 q+1-19 q^{-1} +17 q^{-2} +5 q^{-3} -22 q^{-4} +15 q^{-5} +8 q^{-6} -20 q^{-7} +11 q^{-8} +6 q^{-9} -13 q^{-10} +7 q^{-11} +2 q^{-12} -6 q^{-13} +4 q^{-14} -2 q^{-16} + q^{-17} </math>|J3=<math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+5 q^{17}-3 q^{16}-9 q^{15}+q^{14}+14 q^{13}+2 q^{12}-16 q^{11}-9 q^{10}+19 q^9+14 q^8-17 q^7-20 q^6+13 q^5+24 q^4-8 q^3-26 q^2+3 q+26+4 q^{-1} -25 q^{-2} -9 q^{-3} +22 q^{-4} +16 q^{-5} -21 q^{-6} -19 q^{-7} +15 q^{-8} +26 q^{-9} -14 q^{-10} -24 q^{-11} +6 q^{-12} +27 q^{-13} -7 q^{-14} -17 q^{-15} - q^{-16} +15 q^{-17} -2 q^{-18} -6 q^{-19} + q^{-20} +2 q^{-21} -3 q^{-22} +2 q^{-23} +3 q^{-24} -3 q^{-25} -3 q^{-26} +2 q^{-27} +4 q^{-28} -3 q^{-29} - q^{-30} +2 q^{-32} - q^{-33} </math>|J4=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+6 q^{31}-7 q^{30}-7 q^{29}+q^{27}+24 q^{26}-6 q^{25}-15 q^{24}-11 q^{23}-13 q^{22}+43 q^{21}+6 q^{20}-7 q^{19}-18 q^{18}-43 q^{17}+46 q^{16}+12 q^{15}+14 q^{14}-3 q^{13}-64 q^{12}+34 q^{11}-7 q^{10}+27 q^9+28 q^8-60 q^7+29 q^6-44 q^5+15 q^4+55 q^3-34 q^2+42 q-82-14 q^{-1} +69 q^{-2} -3 q^{-3} +66 q^{-4} -111 q^{-5} -48 q^{-6} +74 q^{-7} +28 q^{-8} +88 q^{-9} -133 q^{-10} -79 q^{-11} +75 q^{-12} +56 q^{-13} +106 q^{-14} -144 q^{-15} -107 q^{-16} +64 q^{-17} +75 q^{-18} +122 q^{-19} -130 q^{-20} -119 q^{-21} +35 q^{-22} +65 q^{-23} +129 q^{-24} -87 q^{-25} -102 q^{-26} +4 q^{-27} +31 q^{-28} +108 q^{-29} -41 q^{-30} -60 q^{-31} -9 q^{-32} -4 q^{-33} +70 q^{-34} -12 q^{-35} -24 q^{-36} -7 q^{-37} -18 q^{-38} +37 q^{-39} -2 q^{-40} -5 q^{-41} -2 q^{-42} -16 q^{-43} +16 q^{-44} + q^{-46} -8 q^{-48} +5 q^{-49} + q^{-51} -2 q^{-53} + q^{-54} </math>|J5=<math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+2 q^{49}-5 q^{48}-9 q^{47}+5 q^{45}+10 q^{44}+13 q^{43}-2 q^{42}-20 q^{41}-21 q^{40}-4 q^{39}+15 q^{38}+32 q^{37}+23 q^{36}-12 q^{35}-36 q^{34}-35 q^{33}-6 q^{32}+31 q^{31}+45 q^{30}+23 q^{29}-15 q^{28}-42 q^{27}-38 q^{26}-q^{25}+25 q^{24}+32 q^{23}+23 q^{22}-18 q^{20}-23 q^{19}-25 q^{18}-21 q^{17}+10 q^{16}+48 q^{15}+59 q^{14}+26 q^{13}-51 q^{12}-104 q^{11}-76 q^{10}+36 q^9+142 q^8+136 q^7-6 q^6-166 q^5-195 q^4-42 q^3+176 q^2+256 q+94-176 q^{-1} -304 q^{-2} -149 q^{-3} +161 q^{-4} +350 q^{-5} +205 q^{-6} -152 q^{-7} -381 q^{-8} -253 q^{-9} +131 q^{-10} +417 q^{-11} +298 q^{-12} -123 q^{-13} -439 q^{-14} -338 q^{-15} +103 q^{-16} +475 q^{-17} +375 q^{-18} -101 q^{-19} -485 q^{-20} -413 q^{-21} +70 q^{-22} +517 q^{-23} +443 q^{-24} -60 q^{-25} -496 q^{-26} -471 q^{-27} +4 q^{-28} +493 q^{-29} +485 q^{-30} +17 q^{-31} -428 q^{-32} -472 q^{-33} -83 q^{-34} +379 q^{-35} +445 q^{-36} +96 q^{-37} -292 q^{-38} -382 q^{-39} -127 q^{-40} +222 q^{-41} +320 q^{-42} +114 q^{-43} -148 q^{-44} -245 q^{-45} -107 q^{-46} +102 q^{-47} +177 q^{-48} +83 q^{-49} -61 q^{-50} -122 q^{-51} -66 q^{-52} +38 q^{-53} +83 q^{-54} +44 q^{-55} -21 q^{-56} -52 q^{-57} -30 q^{-58} +7 q^{-59} +34 q^{-60} +25 q^{-61} -8 q^{-62} -20 q^{-63} -10 q^{-64} -3 q^{-65} +10 q^{-66} +14 q^{-67} -2 q^{-68} -8 q^{-69} - q^{-70} -4 q^{-71} +2 q^{-72} +6 q^{-73} - q^{-74} -2 q^{-75} - q^{-77} +2 q^{-79} - q^{-80} </math>|J6=<math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+4 q^{71}-7 q^{70}-9 q^{69}+3 q^{68}+4 q^{67}+11 q^{66}+2 q^{65}+18 q^{64}-14 q^{63}-27 q^{62}-13 q^{61}-7 q^{60}+17 q^{59}+9 q^{58}+63 q^{57}+4 q^{56}-31 q^{55}-35 q^{54}-43 q^{53}-12 q^{52}-20 q^{51}+102 q^{50}+44 q^{49}+13 q^{48}-15 q^{47}-46 q^{46}-48 q^{45}-98 q^{44}+82 q^{43}+28 q^{42}+44 q^{41}+31 q^{40}+23 q^{39}+q^{38}-125 q^{37}+53 q^{36}-56 q^{35}-29 q^{34}-23 q^{33}+66 q^{32}+108 q^{31}-21 q^{30}+156 q^{29}-69 q^{28}-138 q^{27}-225 q^{26}-62 q^{25}+105 q^{24}+102 q^{23}+401 q^{22}+125 q^{21}-99 q^{20}-423 q^{19}-337 q^{18}-121 q^{17}+55 q^{16}+614 q^{15}+465 q^{14}+170 q^{13}-432 q^{12}-571 q^{11}-483 q^{10}-223 q^9+629 q^8+765 q^7+569 q^6-215 q^5-622 q^4-805 q^3-624 q^2+431 q+904+938 q^{-1} +123 q^{-2} -493 q^{-3} -993 q^{-4} -1007 q^{-5} +126 q^{-6} +895 q^{-7} +1200 q^{-8} +455 q^{-9} -285 q^{-10} -1064 q^{-11} -1303 q^{-12} -171 q^{-13} +830 q^{-14} +1370 q^{-15} +721 q^{-16} -101 q^{-17} -1098 q^{-18} -1519 q^{-19} -405 q^{-20} +789 q^{-21} +1508 q^{-22} +926 q^{-23} +22 q^{-24} -1150 q^{-25} -1701 q^{-26} -591 q^{-27} +772 q^{-28} +1639 q^{-29} +1118 q^{-30} +135 q^{-31} -1179 q^{-32} -1854 q^{-33} -792 q^{-34} +682 q^{-35} +1690 q^{-36} +1297 q^{-37} +325 q^{-38} -1063 q^{-39} -1883 q^{-40} -992 q^{-41} +428 q^{-42} +1519 q^{-43} +1347 q^{-44} +556 q^{-45} -737 q^{-46} -1654 q^{-47} -1048 q^{-48} +99 q^{-49} +1105 q^{-50} +1136 q^{-51} +653 q^{-52} -342 q^{-53} -1185 q^{-54} -847 q^{-55} -108 q^{-56} +635 q^{-57} +727 q^{-58} +526 q^{-59} -82 q^{-60} -695 q^{-61} -496 q^{-62} -119 q^{-63} +307 q^{-64} +343 q^{-65} +296 q^{-66} + q^{-67} -361 q^{-68} -207 q^{-69} -46 q^{-70} +151 q^{-71} +118 q^{-72} +125 q^{-73} +2 q^{-74} -190 q^{-75} -59 q^{-76} -2 q^{-77} +85 q^{-78} +31 q^{-79} +48 q^{-80} - q^{-81} -106 q^{-82} -9 q^{-83} +4 q^{-84} +46 q^{-85} +7 q^{-86} +23 q^{-87} + q^{-88} -55 q^{-89} +2 q^{-90} -2 q^{-91} +21 q^{-92} +13 q^{-94} +2 q^{-95} -24 q^{-96} +4 q^{-97} -4 q^{-98} +8 q^{-99} - q^{-100} +5 q^{-101} + q^{-102} -8 q^{-103} +3 q^{-104} -2 q^{-105} +2 q^{-106} + q^{-108} -2 q^{-110} + q^{-111} </math>|J7=<math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+2 q^{97}-7 q^{96}-6 q^{95}+2 q^{94}+4 q^{93}+13 q^{92}+4 q^{91}+9 q^{89}-18 q^{88}-23 q^{87}-16 q^{86}-9 q^{85}+27 q^{84}+25 q^{83}+21 q^{82}+41 q^{81}-6 q^{80}-34 q^{79}-47 q^{78}-74 q^{77}-2 q^{76}+20 q^{75}+33 q^{74}+98 q^{73}+51 q^{72}+22 q^{71}-21 q^{70}-120 q^{69}-68 q^{68}-47 q^{67}-37 q^{66}+88 q^{65}+66 q^{64}+87 q^{63}+92 q^{62}-60 q^{61}-30 q^{60}-55 q^{59}-106 q^{58}+8 q^{57}-47 q^{56}-9 q^{55}+86 q^{54}-21 q^{53}+89 q^{52}+111 q^{51}+24 q^{50}+113 q^{49}-87 q^{48}-194 q^{47}-160 q^{46}-282 q^{45}-37 q^{44}+189 q^{43}+276 q^{42}+518 q^{41}+280 q^{40}-60 q^{39}-308 q^{38}-739 q^{37}-585 q^{36}-217 q^{35}+169 q^{34}+857 q^{33}+926 q^{32}+616 q^{31}+119 q^{30}-826 q^{29}-1166 q^{28}-1039 q^{27}-577 q^{26}+584 q^{25}+1262 q^{24}+1432 q^{23}+1110 q^{22}-168 q^{21}-1154 q^{20}-1689 q^{19}-1640 q^{18}-385 q^{17}+837 q^{16}+1754 q^{15}+2101 q^{14}+1008 q^{13}-356 q^{12}-1635 q^{11}-2413 q^{10}-1596 q^9-248 q^8+1313 q^7+2554 q^6+2137 q^5+897 q^4-861 q^3-2540 q^2-2550 q-1529+315 q^{-1} +2369 q^{-2} +2843 q^{-3} +2130 q^{-4} +271 q^{-5} -2121 q^{-6} -3031 q^{-7} -2635 q^{-8} -832 q^{-9} +1789 q^{-10} +3125 q^{-11} +3072 q^{-12} +1371 q^{-13} -1466 q^{-14} -3167 q^{-15} -3425 q^{-16} -1833 q^{-17} +1156 q^{-18} +3174 q^{-19} +3717 q^{-20} +2229 q^{-21} -889 q^{-22} -3187 q^{-23} -3968 q^{-24} -2553 q^{-25} +684 q^{-26} +3226 q^{-27} +4189 q^{-28} +2816 q^{-29} -538 q^{-30} -3284 q^{-31} -4403 q^{-32} -3058 q^{-33} +419 q^{-34} +3389 q^{-35} +4638 q^{-36} +3272 q^{-37} -328 q^{-38} -3462 q^{-39} -4848 q^{-40} -3538 q^{-41} +154 q^{-42} +3524 q^{-43} +5082 q^{-44} +3800 q^{-45} +52 q^{-46} -3449 q^{-47} -5191 q^{-48} -4102 q^{-49} -422 q^{-50} +3238 q^{-51} +5228 q^{-52} +4359 q^{-53} +816 q^{-54} -2844 q^{-55} -5022 q^{-56} -4488 q^{-57} -1295 q^{-58} +2267 q^{-59} +4638 q^{-60} +4470 q^{-61} +1682 q^{-62} -1637 q^{-63} -4014 q^{-64} -4185 q^{-65} -1941 q^{-66} +945 q^{-67} +3259 q^{-68} +3730 q^{-69} +2007 q^{-70} -391 q^{-71} -2460 q^{-72} -3070 q^{-73} -1872 q^{-74} -39 q^{-75} +1705 q^{-76} +2370 q^{-77} +1579 q^{-78} +275 q^{-79} -1070 q^{-80} -1693 q^{-81} -1208 q^{-82} -357 q^{-83} +616 q^{-84} +1104 q^{-85} +816 q^{-86} +339 q^{-87} -303 q^{-88} -659 q^{-89} -498 q^{-90} -258 q^{-91} +136 q^{-92} +358 q^{-93} +242 q^{-94} +156 q^{-95} -44 q^{-96} -161 q^{-97} -78 q^{-98} -92 q^{-99} +13 q^{-100} +72 q^{-101} -12 q^{-102} +26 q^{-103} -14 q^{-104} -15 q^{-105} +62 q^{-106} -2 q^{-107} +6 q^{-108} +3 q^{-109} -59 q^{-110} -11 q^{-111} -22 q^{-112} -6 q^{-113} +65 q^{-114} +20 q^{-115} +12 q^{-116} - q^{-117} -42 q^{-118} -5 q^{-119} -19 q^{-120} -13 q^{-121} +34 q^{-122} +13 q^{-123} +10 q^{-124} +3 q^{-125} -20 q^{-126} -8 q^{-128} -9 q^{-129} +14 q^{-130} +2 q^{-131} +4 q^{-132} +4 q^{-133} -8 q^{-134} + q^{-135} -3 q^{-136} -2 q^{-137} +5 q^{-138} - q^{-139} +2 q^{-141} -2 q^{-142} - q^{-144} +2 q^{-146} - q^{-147} </math>}}
coloured_jones_4 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+6 q^{31}-7 q^{30}-7 q^{29}+q^{27}+24 q^{26}-6 q^{25}-15 q^{24}-11 q^{23}-13 q^{22}+43 q^{21}+6 q^{20}-7 q^{19}-18 q^{18}-43 q^{17}+46 q^{16}+12 q^{15}+14 q^{14}-3 q^{13}-64 q^{12}+34 q^{11}-7 q^{10}+27 q^9+28 q^8-60 q^7+29 q^6-44 q^5+15 q^4+55 q^3-34 q^2+42 q-82-14 q^{-1} +69 q^{-2} -3 q^{-3} +66 q^{-4} -111 q^{-5} -48 q^{-6} +74 q^{-7} +28 q^{-8} +88 q^{-9} -133 q^{-10} -79 q^{-11} +75 q^{-12} +56 q^{-13} +106 q^{-14} -144 q^{-15} -107 q^{-16} +64 q^{-17} +75 q^{-18} +122 q^{-19} -130 q^{-20} -119 q^{-21} +35 q^{-22} +65 q^{-23} +129 q^{-24} -87 q^{-25} -102 q^{-26} +4 q^{-27} +31 q^{-28} +108 q^{-29} -41 q^{-30} -60 q^{-31} -9 q^{-32} -4 q^{-33} +70 q^{-34} -12 q^{-35} -24 q^{-36} -7 q^{-37} -18 q^{-38} +37 q^{-39} -2 q^{-40} -5 q^{-41} -2 q^{-42} -16 q^{-43} +16 q^{-44} + q^{-46} -8 q^{-48} +5 q^{-49} + q^{-51} -2 q^{-53} + q^{-54} </math> |

coloured_jones_5 = <math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+2 q^{49}-5 q^{48}-9 q^{47}+5 q^{45}+10 q^{44}+13 q^{43}-2 q^{42}-20 q^{41}-21 q^{40}-4 q^{39}+15 q^{38}+32 q^{37}+23 q^{36}-12 q^{35}-36 q^{34}-35 q^{33}-6 q^{32}+31 q^{31}+45 q^{30}+23 q^{29}-15 q^{28}-42 q^{27}-38 q^{26}-q^{25}+25 q^{24}+32 q^{23}+23 q^{22}-18 q^{20}-23 q^{19}-25 q^{18}-21 q^{17}+10 q^{16}+48 q^{15}+59 q^{14}+26 q^{13}-51 q^{12}-104 q^{11}-76 q^{10}+36 q^9+142 q^8+136 q^7-6 q^6-166 q^5-195 q^4-42 q^3+176 q^2+256 q+94-176 q^{-1} -304 q^{-2} -149 q^{-3} +161 q^{-4} +350 q^{-5} +205 q^{-6} -152 q^{-7} -381 q^{-8} -253 q^{-9} +131 q^{-10} +417 q^{-11} +298 q^{-12} -123 q^{-13} -439 q^{-14} -338 q^{-15} +103 q^{-16} +475 q^{-17} +375 q^{-18} -101 q^{-19} -485 q^{-20} -413 q^{-21} +70 q^{-22} +517 q^{-23} +443 q^{-24} -60 q^{-25} -496 q^{-26} -471 q^{-27} +4 q^{-28} +493 q^{-29} +485 q^{-30} +17 q^{-31} -428 q^{-32} -472 q^{-33} -83 q^{-34} +379 q^{-35} +445 q^{-36} +96 q^{-37} -292 q^{-38} -382 q^{-39} -127 q^{-40} +222 q^{-41} +320 q^{-42} +114 q^{-43} -148 q^{-44} -245 q^{-45} -107 q^{-46} +102 q^{-47} +177 q^{-48} +83 q^{-49} -61 q^{-50} -122 q^{-51} -66 q^{-52} +38 q^{-53} +83 q^{-54} +44 q^{-55} -21 q^{-56} -52 q^{-57} -30 q^{-58} +7 q^{-59} +34 q^{-60} +25 q^{-61} -8 q^{-62} -20 q^{-63} -10 q^{-64} -3 q^{-65} +10 q^{-66} +14 q^{-67} -2 q^{-68} -8 q^{-69} - q^{-70} -4 q^{-71} +2 q^{-72} +6 q^{-73} - q^{-74} -2 q^{-75} - q^{-77} +2 q^{-79} - q^{-80} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+4 q^{71}-7 q^{70}-9 q^{69}+3 q^{68}+4 q^{67}+11 q^{66}+2 q^{65}+18 q^{64}-14 q^{63}-27 q^{62}-13 q^{61}-7 q^{60}+17 q^{59}+9 q^{58}+63 q^{57}+4 q^{56}-31 q^{55}-35 q^{54}-43 q^{53}-12 q^{52}-20 q^{51}+102 q^{50}+44 q^{49}+13 q^{48}-15 q^{47}-46 q^{46}-48 q^{45}-98 q^{44}+82 q^{43}+28 q^{42}+44 q^{41}+31 q^{40}+23 q^{39}+q^{38}-125 q^{37}+53 q^{36}-56 q^{35}-29 q^{34}-23 q^{33}+66 q^{32}+108 q^{31}-21 q^{30}+156 q^{29}-69 q^{28}-138 q^{27}-225 q^{26}-62 q^{25}+105 q^{24}+102 q^{23}+401 q^{22}+125 q^{21}-99 q^{20}-423 q^{19}-337 q^{18}-121 q^{17}+55 q^{16}+614 q^{15}+465 q^{14}+170 q^{13}-432 q^{12}-571 q^{11}-483 q^{10}-223 q^9+629 q^8+765 q^7+569 q^6-215 q^5-622 q^4-805 q^3-624 q^2+431 q+904+938 q^{-1} +123 q^{-2} -493 q^{-3} -993 q^{-4} -1007 q^{-5} +126 q^{-6} +895 q^{-7} +1200 q^{-8} +455 q^{-9} -285 q^{-10} -1064 q^{-11} -1303 q^{-12} -171 q^{-13} +830 q^{-14} +1370 q^{-15} +721 q^{-16} -101 q^{-17} -1098 q^{-18} -1519 q^{-19} -405 q^{-20} +789 q^{-21} +1508 q^{-22} +926 q^{-23} +22 q^{-24} -1150 q^{-25} -1701 q^{-26} -591 q^{-27} +772 q^{-28} +1639 q^{-29} +1118 q^{-30} +135 q^{-31} -1179 q^{-32} -1854 q^{-33} -792 q^{-34} +682 q^{-35} +1690 q^{-36} +1297 q^{-37} +325 q^{-38} -1063 q^{-39} -1883 q^{-40} -992 q^{-41} +428 q^{-42} +1519 q^{-43} +1347 q^{-44} +556 q^{-45} -737 q^{-46} -1654 q^{-47} -1048 q^{-48} +99 q^{-49} +1105 q^{-50} +1136 q^{-51} +653 q^{-52} -342 q^{-53} -1185 q^{-54} -847 q^{-55} -108 q^{-56} +635 q^{-57} +727 q^{-58} +526 q^{-59} -82 q^{-60} -695 q^{-61} -496 q^{-62} -119 q^{-63} +307 q^{-64} +343 q^{-65} +296 q^{-66} + q^{-67} -361 q^{-68} -207 q^{-69} -46 q^{-70} +151 q^{-71} +118 q^{-72} +125 q^{-73} +2 q^{-74} -190 q^{-75} -59 q^{-76} -2 q^{-77} +85 q^{-78} +31 q^{-79} +48 q^{-80} - q^{-81} -106 q^{-82} -9 q^{-83} +4 q^{-84} +46 q^{-85} +7 q^{-86} +23 q^{-87} + q^{-88} -55 q^{-89} +2 q^{-90} -2 q^{-91} +21 q^{-92} +13 q^{-94} +2 q^{-95} -24 q^{-96} +4 q^{-97} -4 q^{-98} +8 q^{-99} - q^{-100} +5 q^{-101} + q^{-102} -8 q^{-103} +3 q^{-104} -2 q^{-105} +2 q^{-106} + q^{-108} -2 q^{-110} + q^{-111} </math> |

coloured_jones_7 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+2 q^{97}-7 q^{96}-6 q^{95}+2 q^{94}+4 q^{93}+13 q^{92}+4 q^{91}+9 q^{89}-18 q^{88}-23 q^{87}-16 q^{86}-9 q^{85}+27 q^{84}+25 q^{83}+21 q^{82}+41 q^{81}-6 q^{80}-34 q^{79}-47 q^{78}-74 q^{77}-2 q^{76}+20 q^{75}+33 q^{74}+98 q^{73}+51 q^{72}+22 q^{71}-21 q^{70}-120 q^{69}-68 q^{68}-47 q^{67}-37 q^{66}+88 q^{65}+66 q^{64}+87 q^{63}+92 q^{62}-60 q^{61}-30 q^{60}-55 q^{59}-106 q^{58}+8 q^{57}-47 q^{56}-9 q^{55}+86 q^{54}-21 q^{53}+89 q^{52}+111 q^{51}+24 q^{50}+113 q^{49}-87 q^{48}-194 q^{47}-160 q^{46}-282 q^{45}-37 q^{44}+189 q^{43}+276 q^{42}+518 q^{41}+280 q^{40}-60 q^{39}-308 q^{38}-739 q^{37}-585 q^{36}-217 q^{35}+169 q^{34}+857 q^{33}+926 q^{32}+616 q^{31}+119 q^{30}-826 q^{29}-1166 q^{28}-1039 q^{27}-577 q^{26}+584 q^{25}+1262 q^{24}+1432 q^{23}+1110 q^{22}-168 q^{21}-1154 q^{20}-1689 q^{19}-1640 q^{18}-385 q^{17}+837 q^{16}+1754 q^{15}+2101 q^{14}+1008 q^{13}-356 q^{12}-1635 q^{11}-2413 q^{10}-1596 q^9-248 q^8+1313 q^7+2554 q^6+2137 q^5+897 q^4-861 q^3-2540 q^2-2550 q-1529+315 q^{-1} +2369 q^{-2} +2843 q^{-3} +2130 q^{-4} +271 q^{-5} -2121 q^{-6} -3031 q^{-7} -2635 q^{-8} -832 q^{-9} +1789 q^{-10} +3125 q^{-11} +3072 q^{-12} +1371 q^{-13} -1466 q^{-14} -3167 q^{-15} -3425 q^{-16} -1833 q^{-17} +1156 q^{-18} +3174 q^{-19} +3717 q^{-20} +2229 q^{-21} -889 q^{-22} -3187 q^{-23} -3968 q^{-24} -2553 q^{-25} +684 q^{-26} +3226 q^{-27} +4189 q^{-28} +2816 q^{-29} -538 q^{-30} -3284 q^{-31} -4403 q^{-32} -3058 q^{-33} +419 q^{-34} +3389 q^{-35} +4638 q^{-36} +3272 q^{-37} -328 q^{-38} -3462 q^{-39} -4848 q^{-40} -3538 q^{-41} +154 q^{-42} +3524 q^{-43} +5082 q^{-44} +3800 q^{-45} +52 q^{-46} -3449 q^{-47} -5191 q^{-48} -4102 q^{-49} -422 q^{-50} +3238 q^{-51} +5228 q^{-52} +4359 q^{-53} +816 q^{-54} -2844 q^{-55} -5022 q^{-56} -4488 q^{-57} -1295 q^{-58} +2267 q^{-59} +4638 q^{-60} +4470 q^{-61} +1682 q^{-62} -1637 q^{-63} -4014 q^{-64} -4185 q^{-65} -1941 q^{-66} +945 q^{-67} +3259 q^{-68} +3730 q^{-69} +2007 q^{-70} -391 q^{-71} -2460 q^{-72} -3070 q^{-73} -1872 q^{-74} -39 q^{-75} +1705 q^{-76} +2370 q^{-77} +1579 q^{-78} +275 q^{-79} -1070 q^{-80} -1693 q^{-81} -1208 q^{-82} -357 q^{-83} +616 q^{-84} +1104 q^{-85} +816 q^{-86} +339 q^{-87} -303 q^{-88} -659 q^{-89} -498 q^{-90} -258 q^{-91} +136 q^{-92} +358 q^{-93} +242 q^{-94} +156 q^{-95} -44 q^{-96} -161 q^{-97} -78 q^{-98} -92 q^{-99} +13 q^{-100} +72 q^{-101} -12 q^{-102} +26 q^{-103} -14 q^{-104} -15 q^{-105} +62 q^{-106} -2 q^{-107} +6 q^{-108} +3 q^{-109} -59 q^{-110} -11 q^{-111} -22 q^{-112} -6 q^{-113} +65 q^{-114} +20 q^{-115} +12 q^{-116} - q^{-117} -42 q^{-118} -5 q^{-119} -19 q^{-120} -13 q^{-121} +34 q^{-122} +13 q^{-123} +10 q^{-124} +3 q^{-125} -20 q^{-126} -8 q^{-128} -9 q^{-129} +14 q^{-130} +2 q^{-131} +4 q^{-132} +4 q^{-133} -8 q^{-134} + q^{-135} -3 q^{-136} -2 q^{-137} +5 q^{-138} - q^{-139} +2 q^{-141} -2 q^{-142} - q^{-144} +2 q^{-146} - q^{-147} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 1, 10, 18],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 1, 10, 18],
X[11, 17, 12, 16], X[15, 13, 16, 12], X[17, 11, 18, 10],
X[11, 17, 12, 16], X[15, 13, 16, 12], X[17, 11, 18, 10],
X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 8]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 2, 18, 16, 6, 12, 10]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 2, 18, 16, 6, 12, 10]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, 2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, 2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 8]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 8]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 2
-11 - -- + - + 8 t - 2 t
-11 - -- + - + 8 t - 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 8]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 8]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
1 - 2 z</nowiki></pre></td></tr>
1 - 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 14], Knot[9, 8], Knot[10, 131]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 14], Knot[9, 8], Knot[10, 131]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 8]], KnotSignature[Knot[9, 8]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 8]], KnotSignature[Knot[9, 8]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 8]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 5 5 5 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 8]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 5 5 5 2 3
-4 - q + -- - -- + -- - -- + - + 3 q - 2 q + q
-4 - q + -- - -- + -- - -- + - + 3 q - 2 q + q
5 4 3 2 q
5 4 3 2 q
q q q q</nowiki></pre></td></tr>
q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 8], Knot[11, NonAlternating, 60]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 8], Knot[11, NonAlternating, 60]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 8]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 -12 2 -6 -4 2 4 10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 8]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 -12 2 -6 -4 2 4 10
-q - q + q + q + --- + q - q - q + q + q
-q - q + q + q + --- + q - q - q + q + q
10
10
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 8]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 8]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-2 4 6 2 z 2 2 4 2 4 2 4
-2 4 6 2 z 2 2 4 2 4 2 4
-1 + a + 2 a - a - 2 z + -- - a z + 2 a z - z - a z
-1 + a + 2 a - a - 2 z + -- - a z + 2 a z - z - a z
2
2
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 8]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 8]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-2 4 6 2 z 3 5 7 2 4 z
-2 4 6 2 z 3 5 7 2 4 z
-1 - a + 2 a + a - --- - 3 a z - a z - a z - a z + 7 z + ---- +
-1 - a + 2 a + a - --- - 3 a z - a z - a z - a z + 7 z + ---- +
Line 174: Line 123:
2 a
2 a
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 8]], Vassiliev[3][Knot[9, 8]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 8]], Vassiliev[3][Knot[9, 8]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 8]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 3 1 1 1 2 1 3 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 8]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 3 1 1 1 2 1 3 2
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
Line 188: Line 135:
5 3 q
5 3 q
q t q t</nowiki></pre></td></tr>
q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 8], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 8], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 2 4 6 2 7 13 6 11 20 8 15
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 2 4 6 2 7 13 6 11 20 8 15
1 + q - --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- -
1 + q - --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- -
16 14 13 12 11 10 9 8 7 6 5
16 14 13 12 11 10 9 8 7 6 5
Line 202: Line 148:
7 8 9 10
7 8 9 10
6 q - q - 2 q + q</nowiki></pre></td></tr>
6 q - q - 2 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:41, 30 August 2005

9 7.gif

9_7

9 9.gif

9_9

9 8.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 8 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X9,1,10,18 X11,17,12,16 X15,13,16,12 X17,11,18,10 X13,6,14,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -5, 6, -8, 3, -6, 5, -7, 4
Dowker-Thistlethwaite code 4 8 14 2 18 16 6 12 10
Conway Notation [2412]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 10, width is 5,

Braid index is 5

9 8 ML.gif 9 8 AP.gif
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {4, 9}, {3, 5}, {6, 4}, {5, 7}, {11, 6}, {7, 1}]

[edit Notes on presentations of 9 8]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-3]
Hyperbolic Volume 8.19235
A-Polynomial See Data:9 8/A-polynomial

[edit Notes for 9 8's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 8's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_14, 10_131,}

Same Jones Polynomial (up to mirroring, ): {K11n60,}

Vassiliev invariants

V2 and V3: (0, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        1 -1
3       21 1
1      21  -1
-1     32   1
-3    33    0
-5   22     0
-7  13      2
-9 12       -1
-11 1        1
-131         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials