|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 43: |
Line 46: |
|
coloured_jones_5 = <math>q^{50}-q^{49}-q^{48}+q^{45}+3 q^{44}-3 q^{42}-2 q^{41}-2 q^{40}-q^{39}+6 q^{38}+5 q^{37}-3 q^{35}-5 q^{34}-7 q^{33}+2 q^{32}+7 q^{31}+5 q^{30}+4 q^{29}-2 q^{28}-9 q^{27}-5 q^{26}-q^{25}+2 q^{24}+8 q^{23}+7 q^{22}-2 q^{21}-2 q^{20}-6 q^{19}-9 q^{18}+7 q^{16}+6 q^{15}+8 q^{14}+2 q^{13}-11 q^{12}-11 q^{11}-3 q^{10}+2 q^9+13 q^8+11 q^7-q^6-10 q^5-11 q^4-6 q^3+8 q^2+11 q+4- q^{-1} -6 q^{-2} -8 q^{-3} +3 q^{-4} +4 q^{-5} -3 q^{-6} + q^{-7} +4 q^{-8} + q^{-9} +7 q^{-10} -3 q^{-11} -17 q^{-12} -9 q^{-13} +7 q^{-14} +18 q^{-15} +20 q^{-16} -2 q^{-17} -30 q^{-18} -27 q^{-19} + q^{-20} +29 q^{-21} +39 q^{-22} +8 q^{-23} -35 q^{-24} -45 q^{-25} -12 q^{-26} +32 q^{-27} +52 q^{-28} +18 q^{-29} -34 q^{-30} -55 q^{-31} -20 q^{-32} +34 q^{-33} +57 q^{-34} +21 q^{-35} -36 q^{-36} -63 q^{-37} -21 q^{-38} +42 q^{-39} +67 q^{-40} +25 q^{-41} -45 q^{-42} -79 q^{-43} -30 q^{-44} +51 q^{-45} +86 q^{-46} +37 q^{-47} -48 q^{-48} -92 q^{-49} -49 q^{-50} +47 q^{-51} +94 q^{-52} +51 q^{-53} -38 q^{-54} -89 q^{-55} -55 q^{-56} +31 q^{-57} +82 q^{-58} +53 q^{-59} -25 q^{-60} -71 q^{-61} -48 q^{-62} +20 q^{-63} +59 q^{-64} +41 q^{-65} -13 q^{-66} -51 q^{-67} -35 q^{-68} +13 q^{-69} +40 q^{-70} +26 q^{-71} -8 q^{-72} -31 q^{-73} -21 q^{-74} +7 q^{-75} +23 q^{-76} +14 q^{-77} -7 q^{-78} -13 q^{-79} -8 q^{-80} + q^{-81} +10 q^{-82} +6 q^{-83} -4 q^{-84} -3 q^{-85} -2 q^{-86} -2 q^{-87} +3 q^{-88} +4 q^{-89} -2 q^{-90} -3 q^{-93} + q^{-94} +2 q^{-95} - q^{-96} + q^{-98} -2 q^{-99} + q^{-100} </math> | |
|
coloured_jones_5 = <math>q^{50}-q^{49}-q^{48}+q^{45}+3 q^{44}-3 q^{42}-2 q^{41}-2 q^{40}-q^{39}+6 q^{38}+5 q^{37}-3 q^{35}-5 q^{34}-7 q^{33}+2 q^{32}+7 q^{31}+5 q^{30}+4 q^{29}-2 q^{28}-9 q^{27}-5 q^{26}-q^{25}+2 q^{24}+8 q^{23}+7 q^{22}-2 q^{21}-2 q^{20}-6 q^{19}-9 q^{18}+7 q^{16}+6 q^{15}+8 q^{14}+2 q^{13}-11 q^{12}-11 q^{11}-3 q^{10}+2 q^9+13 q^8+11 q^7-q^6-10 q^5-11 q^4-6 q^3+8 q^2+11 q+4- q^{-1} -6 q^{-2} -8 q^{-3} +3 q^{-4} +4 q^{-5} -3 q^{-6} + q^{-7} +4 q^{-8} + q^{-9} +7 q^{-10} -3 q^{-11} -17 q^{-12} -9 q^{-13} +7 q^{-14} +18 q^{-15} +20 q^{-16} -2 q^{-17} -30 q^{-18} -27 q^{-19} + q^{-20} +29 q^{-21} +39 q^{-22} +8 q^{-23} -35 q^{-24} -45 q^{-25} -12 q^{-26} +32 q^{-27} +52 q^{-28} +18 q^{-29} -34 q^{-30} -55 q^{-31} -20 q^{-32} +34 q^{-33} +57 q^{-34} +21 q^{-35} -36 q^{-36} -63 q^{-37} -21 q^{-38} +42 q^{-39} +67 q^{-40} +25 q^{-41} -45 q^{-42} -79 q^{-43} -30 q^{-44} +51 q^{-45} +86 q^{-46} +37 q^{-47} -48 q^{-48} -92 q^{-49} -49 q^{-50} +47 q^{-51} +94 q^{-52} +51 q^{-53} -38 q^{-54} -89 q^{-55} -55 q^{-56} +31 q^{-57} +82 q^{-58} +53 q^{-59} -25 q^{-60} -71 q^{-61} -48 q^{-62} +20 q^{-63} +59 q^{-64} +41 q^{-65} -13 q^{-66} -51 q^{-67} -35 q^{-68} +13 q^{-69} +40 q^{-70} +26 q^{-71} -8 q^{-72} -31 q^{-73} -21 q^{-74} +7 q^{-75} +23 q^{-76} +14 q^{-77} -7 q^{-78} -13 q^{-79} -8 q^{-80} + q^{-81} +10 q^{-82} +6 q^{-83} -4 q^{-84} -3 q^{-85} -2 q^{-86} -2 q^{-87} +3 q^{-88} +4 q^{-89} -2 q^{-90} -3 q^{-93} + q^{-94} +2 q^{-95} - q^{-96} + q^{-98} -2 q^{-99} + q^{-100} </math> | |
|
coloured_jones_6 = <math>q^{72}-q^{71}-q^{70}+q^{67}+4 q^{65}-q^{64}-3 q^{63}-2 q^{62}-2 q^{61}-2 q^{59}+10 q^{58}+3 q^{57}-2 q^{55}-5 q^{54}-4 q^{53}-12 q^{52}+10 q^{51}+5 q^{50}+6 q^{49}+5 q^{48}+2 q^{47}-q^{46}-21 q^{45}+3 q^{44}-5 q^{43}+2 q^{42}+4 q^{41}+12 q^{40}+14 q^{39}-15 q^{38}+8 q^{37}-12 q^{36}-9 q^{35}-13 q^{34}+4 q^{33}+18 q^{32}-6 q^{31}+26 q^{30}+q^{29}-2 q^{28}-25 q^{27}-12 q^{26}+2 q^{25}-18 q^{24}+31 q^{23}+14 q^{22}+20 q^{21}-14 q^{20}-9 q^{19}-6 q^{18}-39 q^{17}+16 q^{16}+6 q^{15}+26 q^{14}-3 q^{13}+8 q^{12}+9 q^{11}-38 q^{10}+10 q^9-10 q^8+12 q^7-17 q^6+7 q^5+24 q^4-21 q^3+30 q^2-3 q+7-42 q^{-1} -21 q^{-2} +13 q^{-3} -18 q^{-4} +54 q^{-5} +27 q^{-6} +33 q^{-7} -47 q^{-8} -51 q^{-9} -19 q^{-10} -43 q^{-11} +57 q^{-12} +54 q^{-13} +77 q^{-14} -24 q^{-15} -60 q^{-16} -48 q^{-17} -82 q^{-18} +34 q^{-19} +60 q^{-20} +116 q^{-21} +15 q^{-22} -47 q^{-23} -61 q^{-24} -117 q^{-25} -2 q^{-26} +44 q^{-27} +140 q^{-28} +54 q^{-29} -20 q^{-30} -56 q^{-31} -137 q^{-32} -38 q^{-33} +13 q^{-34} +142 q^{-35} +80 q^{-36} +11 q^{-37} -34 q^{-38} -135 q^{-39} -63 q^{-40} -21 q^{-41} +128 q^{-42} +84 q^{-43} +31 q^{-44} -9 q^{-45} -122 q^{-46} -70 q^{-47} -42 q^{-48} +118 q^{-49} +84 q^{-50} +38 q^{-51} - q^{-52} -123 q^{-53} -82 q^{-54} -52 q^{-55} +125 q^{-56} +105 q^{-57} +59 q^{-58} +2 q^{-59} -141 q^{-60} -118 q^{-61} -79 q^{-62} +126 q^{-63} +137 q^{-64} +100 q^{-65} +26 q^{-66} -141 q^{-67} -151 q^{-68} -120 q^{-69} +97 q^{-70} +139 q^{-71} +126 q^{-72} +59 q^{-73} -108 q^{-74} -143 q^{-75} -134 q^{-76} +60 q^{-77} +104 q^{-78} +108 q^{-79} +67 q^{-80} -68 q^{-81} -103 q^{-82} -107 q^{-83} +43 q^{-84} +66 q^{-85} +67 q^{-86} +45 q^{-87} -49 q^{-88} -65 q^{-89} -65 q^{-90} +47 q^{-91} +44 q^{-92} +34 q^{-93} +17 q^{-94} -47 q^{-95} -40 q^{-96} -33 q^{-97} +53 q^{-98} +32 q^{-99} +14 q^{-100} -44 q^{-102} -22 q^{-103} -13 q^{-104} +46 q^{-105} +19 q^{-106} + q^{-107} -4 q^{-108} -32 q^{-109} -6 q^{-110} -2 q^{-111} +29 q^{-112} +5 q^{-113} -4 q^{-114} - q^{-115} -19 q^{-116} +3 q^{-117} +15 q^{-119} -2 q^{-120} -3 q^{-121} +2 q^{-122} -11 q^{-123} +5 q^{-124} - q^{-125} +6 q^{-126} -2 q^{-127} +2 q^{-129} -6 q^{-130} +3 q^{-131} - q^{-132} +2 q^{-133} - q^{-134} + q^{-136} -2 q^{-137} + q^{-138} </math> | |
|
coloured_jones_6 = <math>q^{72}-q^{71}-q^{70}+q^{67}+4 q^{65}-q^{64}-3 q^{63}-2 q^{62}-2 q^{61}-2 q^{59}+10 q^{58}+3 q^{57}-2 q^{55}-5 q^{54}-4 q^{53}-12 q^{52}+10 q^{51}+5 q^{50}+6 q^{49}+5 q^{48}+2 q^{47}-q^{46}-21 q^{45}+3 q^{44}-5 q^{43}+2 q^{42}+4 q^{41}+12 q^{40}+14 q^{39}-15 q^{38}+8 q^{37}-12 q^{36}-9 q^{35}-13 q^{34}+4 q^{33}+18 q^{32}-6 q^{31}+26 q^{30}+q^{29}-2 q^{28}-25 q^{27}-12 q^{26}+2 q^{25}-18 q^{24}+31 q^{23}+14 q^{22}+20 q^{21}-14 q^{20}-9 q^{19}-6 q^{18}-39 q^{17}+16 q^{16}+6 q^{15}+26 q^{14}-3 q^{13}+8 q^{12}+9 q^{11}-38 q^{10}+10 q^9-10 q^8+12 q^7-17 q^6+7 q^5+24 q^4-21 q^3+30 q^2-3 q+7-42 q^{-1} -21 q^{-2} +13 q^{-3} -18 q^{-4} +54 q^{-5} +27 q^{-6} +33 q^{-7} -47 q^{-8} -51 q^{-9} -19 q^{-10} -43 q^{-11} +57 q^{-12} +54 q^{-13} +77 q^{-14} -24 q^{-15} -60 q^{-16} -48 q^{-17} -82 q^{-18} +34 q^{-19} +60 q^{-20} +116 q^{-21} +15 q^{-22} -47 q^{-23} -61 q^{-24} -117 q^{-25} -2 q^{-26} +44 q^{-27} +140 q^{-28} +54 q^{-29} -20 q^{-30} -56 q^{-31} -137 q^{-32} -38 q^{-33} +13 q^{-34} +142 q^{-35} +80 q^{-36} +11 q^{-37} -34 q^{-38} -135 q^{-39} -63 q^{-40} -21 q^{-41} +128 q^{-42} +84 q^{-43} +31 q^{-44} -9 q^{-45} -122 q^{-46} -70 q^{-47} -42 q^{-48} +118 q^{-49} +84 q^{-50} +38 q^{-51} - q^{-52} -123 q^{-53} -82 q^{-54} -52 q^{-55} +125 q^{-56} +105 q^{-57} +59 q^{-58} +2 q^{-59} -141 q^{-60} -118 q^{-61} -79 q^{-62} +126 q^{-63} +137 q^{-64} +100 q^{-65} +26 q^{-66} -141 q^{-67} -151 q^{-68} -120 q^{-69} +97 q^{-70} +139 q^{-71} +126 q^{-72} +59 q^{-73} -108 q^{-74} -143 q^{-75} -134 q^{-76} +60 q^{-77} +104 q^{-78} +108 q^{-79} +67 q^{-80} -68 q^{-81} -103 q^{-82} -107 q^{-83} +43 q^{-84} +66 q^{-85} +67 q^{-86} +45 q^{-87} -49 q^{-88} -65 q^{-89} -65 q^{-90} +47 q^{-91} +44 q^{-92} +34 q^{-93} +17 q^{-94} -47 q^{-95} -40 q^{-96} -33 q^{-97} +53 q^{-98} +32 q^{-99} +14 q^{-100} -44 q^{-102} -22 q^{-103} -13 q^{-104} +46 q^{-105} +19 q^{-106} + q^{-107} -4 q^{-108} -32 q^{-109} -6 q^{-110} -2 q^{-111} +29 q^{-112} +5 q^{-113} -4 q^{-114} - q^{-115} -19 q^{-116} +3 q^{-117} +15 q^{-119} -2 q^{-120} -3 q^{-121} +2 q^{-122} -11 q^{-123} +5 q^{-124} - q^{-125} +6 q^{-126} -2 q^{-127} +2 q^{-129} -6 q^{-130} +3 q^{-131} - q^{-132} +2 q^{-133} - q^{-134} + q^{-136} -2 q^{-137} + q^{-138} </math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 8]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 8]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 8]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_8_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 8]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 8]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 8]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 8]][t]</nowiki></pre></td></tr> |