9 42: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 46: Line 49:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 42]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 42]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
Line 64: Line 67:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 42]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_42_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 42]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_42_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 42]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 42]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 42]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 42]][t]</nowiki></pre></td></tr>

Revision as of 17:54, 31 August 2005

9 41.gif

9_41

9 43.gif

9_43

9 42.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 42 at Knotilus!

9_42 is Alexander Stoimenow's favourite knot!

Alsacian chair, alsacian museum, Strasbourg, France

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
Gauss code -1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8
Dowker-Thistlethwaite code 4 8 10 -14 2 -16 -18 -6 -12
Conway Notation [22,3,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 42 ML.gif 9 42 AP.gif
[{11, 2}, {1, 9}, {10, 5}, {9, 11}, {8, 4}, {2, 7}, {6, 8}, {7, 10}, {5, 3}, {4, 1}, {3, 6}]

[edit Notes on presentations of 9 42]

Knot 9_42.
A graph, knot 9_42.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-5]
Hyperbolic Volume 4.05686
A-Polynomial See Data:9 42/A-polynomial

[edit Notes for 9 42's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 42's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^2+2 t-1+2 t^{-1} - t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 7, 2 }
Jones polynomial [math]\displaystyle{ q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a z^7+z^7 a^{-1} +a^2 z^6+z^6 a^{-2} +2 z^6-5 a z^5-5 z^5 a^{-1} -5 a^2 z^4-5 z^4 a^{-2} -10 z^4+6 a z^3+6 z^3 a^{-1} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3 }[/math]
The A2 invariant [math]\displaystyle{ q^{10}+q^8+q^6-q^2-1- q^{-2} + q^{-6} + q^{-8} + q^{-10} }[/math]
The G2 invariant [math]\displaystyle{ q^{46}+q^{42}+2 q^{32}+q^{26}+q^{24}+q^{22}+q^{20}-q^{18}+q^{16}+q^{14}-q^{12}+q^{10}-q^8-q^4-2 q^2-1- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-22} + q^{-24} + q^{-26} +3 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-46} - q^{-50} - q^{-54} + q^{-56} - q^{-60} + q^{-62} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{164}{3} }[/math] [math]\displaystyle{ \frac{76}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{1312}{3} }[/math] [math]\displaystyle{ -\frac{608}{3} }[/math] [math]\displaystyle{ -\frac{6271}{15} }[/math] [math]\displaystyle{ \frac{1484}{15} }[/math] [math]\displaystyle{ -\frac{19564}{45} }[/math] [math]\displaystyle{ \frac{607}{9} }[/math] [math]\displaystyle{ -\frac{1471}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
7      11
5       0
3    11 0
1   11  0
-1   11  0
-3 11    0
-5       0
-71      1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials