|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>-q^{15}+3 q^{14}-q^{13}-4 q^{12}-q^{11}+12 q^{10}+q^9-24 q^8-5 q^7+43 q^6+16 q^5-73 q^4-35 q^3+105 q^2+79 q-150-129 q^{-1} +177 q^{-2} +219 q^{-3} -216 q^{-4} -297 q^{-5} +214 q^{-6} +406 q^{-7} -217 q^{-8} -490 q^{-9} +188 q^{-10} +571 q^{-11} -158 q^{-12} -618 q^{-13} +107 q^{-14} +647 q^{-15} -59 q^{-16} -639 q^{-17} +3 q^{-18} +607 q^{-19} +47 q^{-20} -545 q^{-21} -95 q^{-22} +467 q^{-23} +128 q^{-24} -374 q^{-25} -147 q^{-26} +281 q^{-27} +145 q^{-28} -192 q^{-29} -130 q^{-30} +119 q^{-31} +105 q^{-32} -68 q^{-33} -72 q^{-34} +31 q^{-35} +47 q^{-36} -13 q^{-37} -26 q^{-38} +4 q^{-39} +13 q^{-40} -2 q^{-41} -4 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math> | |
|
coloured_jones_3 = <math>-q^{15}+3 q^{14}-q^{13}-4 q^{12}-q^{11}+12 q^{10}+q^9-24 q^8-5 q^7+43 q^6+16 q^5-73 q^4-35 q^3+105 q^2+79 q-150-129 q^{-1} +177 q^{-2} +219 q^{-3} -216 q^{-4} -297 q^{-5} +214 q^{-6} +406 q^{-7} -217 q^{-8} -490 q^{-9} +188 q^{-10} +571 q^{-11} -158 q^{-12} -618 q^{-13} +107 q^{-14} +647 q^{-15} -59 q^{-16} -639 q^{-17} +3 q^{-18} +607 q^{-19} +47 q^{-20} -545 q^{-21} -95 q^{-22} +467 q^{-23} +128 q^{-24} -374 q^{-25} -147 q^{-26} +281 q^{-27} +145 q^{-28} -192 q^{-29} -130 q^{-30} +119 q^{-31} +105 q^{-32} -68 q^{-33} -72 q^{-34} +31 q^{-35} +47 q^{-36} -13 q^{-37} -26 q^{-38} +4 q^{-39} +13 q^{-40} -2 q^{-41} -4 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math> | |
|
coloured_jones_4 = <math>q^{26}-3 q^{25}+q^{24}+4 q^{23}-3 q^{22}+4 q^{21}-15 q^{20}+7 q^{19}+21 q^{18}-14 q^{17}+9 q^{16}-56 q^{15}+19 q^{14}+82 q^{13}-21 q^{12}+8 q^{11}-178 q^{10}+16 q^9+228 q^8+44 q^7+36 q^6-462 q^5-112 q^4+440 q^3+306 q^2+244 q-913-536 q^{-1} +539 q^{-2} +787 q^{-3} +846 q^{-4} -1340 q^{-5} -1291 q^{-6} +287 q^{-7} +1289 q^{-8} +1853 q^{-9} -1471 q^{-10} -2140 q^{-11} -357 q^{-12} +1549 q^{-13} +2978 q^{-14} -1234 q^{-15} -2766 q^{-16} -1154 q^{-17} +1478 q^{-18} +3843 q^{-19} -764 q^{-20} -2991 q^{-21} -1838 q^{-22} +1141 q^{-23} +4250 q^{-24} -218 q^{-25} -2804 q^{-26} -2266 q^{-27} +620 q^{-28} +4140 q^{-29} +323 q^{-30} -2233 q^{-31} -2385 q^{-32} -17 q^{-33} +3532 q^{-34} +761 q^{-35} -1381 q^{-36} -2136 q^{-37} -607 q^{-38} +2535 q^{-39} +935 q^{-40} -495 q^{-41} -1549 q^{-42} -906 q^{-43} +1443 q^{-44} +764 q^{-45} +103 q^{-46} -838 q^{-47} -810 q^{-48} +607 q^{-49} +409 q^{-50} +284 q^{-51} -304 q^{-52} -491 q^{-53} +184 q^{-54} +123 q^{-55} +200 q^{-56} -58 q^{-57} -209 q^{-58} +47 q^{-59} +7 q^{-60} +83 q^{-61} + q^{-62} -66 q^{-63} +16 q^{-64} -9 q^{-65} +22 q^{-66} +4 q^{-67} -16 q^{-68} +5 q^{-69} -3 q^{-70} +4 q^{-71} + q^{-72} -3 q^{-73} + q^{-74} </math> | |
|
coloured_jones_4 = <math>q^{26}-3 q^{25}+q^{24}+4 q^{23}-3 q^{22}+4 q^{21}-15 q^{20}+7 q^{19}+21 q^{18}-14 q^{17}+9 q^{16}-56 q^{15}+19 q^{14}+82 q^{13}-21 q^{12}+8 q^{11}-178 q^{10}+16 q^9+228 q^8+44 q^7+36 q^6-462 q^5-112 q^4+440 q^3+306 q^2+244 q-913-536 q^{-1} +539 q^{-2} +787 q^{-3} +846 q^{-4} -1340 q^{-5} -1291 q^{-6} +287 q^{-7} +1289 q^{-8} +1853 q^{-9} -1471 q^{-10} -2140 q^{-11} -357 q^{-12} +1549 q^{-13} +2978 q^{-14} -1234 q^{-15} -2766 q^{-16} -1154 q^{-17} +1478 q^{-18} +3843 q^{-19} -764 q^{-20} -2991 q^{-21} -1838 q^{-22} +1141 q^{-23} +4250 q^{-24} -218 q^{-25} -2804 q^{-26} -2266 q^{-27} +620 q^{-28} +4140 q^{-29} +323 q^{-30} -2233 q^{-31} -2385 q^{-32} -17 q^{-33} +3532 q^{-34} +761 q^{-35} -1381 q^{-36} -2136 q^{-37} -607 q^{-38} +2535 q^{-39} +935 q^{-40} -495 q^{-41} -1549 q^{-42} -906 q^{-43} +1443 q^{-44} +764 q^{-45} +103 q^{-46} -838 q^{-47} -810 q^{-48} +607 q^{-49} +409 q^{-50} +284 q^{-51} -304 q^{-52} -491 q^{-53} +184 q^{-54} +123 q^{-55} +200 q^{-56} -58 q^{-57} -209 q^{-58} +47 q^{-59} +7 q^{-60} +83 q^{-61} + q^{-62} -66 q^{-63} +16 q^{-64} -9 q^{-65} +22 q^{-66} +4 q^{-67} -16 q^{-68} +5 q^{-69} -3 q^{-70} +4 q^{-71} + q^{-72} -3 q^{-73} + q^{-74} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 27]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 27]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[14, 5, 15, 6], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 13, 1, 14], X[14, 5, 15, 6], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 27]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_27_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 27]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_27_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 27]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 27]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 27]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 27]][t]</nowiki></pre></td></tr> |