The Multivariable Alexander Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 20: | Line 20: | ||
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4 |
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4 |
||
}$$--> |
}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 4 | |
|||
in = <nowiki>mva = MultivariableAlexander[Link[8, Alternating, 21]] /. { |
|||
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4 |
|||
}</nowiki> | |
|||
out= <nowiki>-#1[1] - #1[2] + #1[1] #1[2] - #1[3] + #1[1] #1[3] + 2 #1[2] #1[3] - |
|||
#1[1] #1[2] #1[3] - #1[4] + 2 #1[1] #1[4] + #1[2] #1[4] - |
|||
#1[1] #1[2] #1[4] + #1[3] #1[4] - #1[1] #1[3] #1[4] - |
|||
#1[2] #1[3] #1[4] & </nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})$$--> |
<!--$$mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 5 | |
|||
in = <nowiki>mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})</nowiki> | |
|||
out= <nowiki>0</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$mva - (mva /. {t1->t2, t2->t1})$$--> |
<!--$$mva - (mva /. {t1->t2, t2->t1})$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
|||
out= <nowiki>0</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 33: | Line 56: | ||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
{{InOut| |
||
n = |
n = 7 | |
||
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]</nowiki> | |
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]</nowiki> | |
||
out= <nowiki>{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32], |
out= <nowiki>{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32], |
Revision as of 14:45, 5 September 2005
(For In[1] see Setup)
|
|
L8a21 |
The link L8a21 is symmetric under cyclic permutations of its components but not under interchanging two adjacent components. It is amusing to see how this is reflected in its multivariable Alexander polynomial:
In[4]:=
|
mva = MultivariableAlexander[Link[8, Alternating, 21]] /. {
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4
}
|
Out[4]=
|
-#1[1] - #1[2] + #1[1] #1[2] - #1[3] + #1[1] #1[3] + 2 #1[2] #1[3] -
#1[1] #1[2] #1[3] - #1[4] + 2 #1[1] #1[4] + #1[2] #1[4] -
#1[1] #1[2] #1[4] + #1[3] #1[4] - #1[1] #1[3] #1[4] -
#1[2] #1[3] #1[4] &
|
In[5]:=
|
mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})
|
Out[5]=
|
0
|
In[6]:=
|
mva - (mva /. {t1->t2, t2->t1})
|
Out[6]=
|
0
|
There are 11 links with up to 11 crossings whose multivariable Alexander polynomial is . Here they are:
In[7]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]
|
Out[7]=
|
{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 107],
Link[11, NonAlternating, 244], Link[11, NonAlternating, 247],
Link[11, NonAlternating, 334], Link[11, NonAlternating, 381],
Link[11, NonAlternating, 396], Link[11, NonAlternating, 404],
Link[11, NonAlternating, 406]}
|