10 134: Difference between revisions
| DrorsRobot (talk | contribs) No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | <!--                       WARNING! WARNING! WARNING! | ||
| <!-- This page was generated from the splice  | <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! | ||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | ||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | ||
| <!--  | <!--  --> | ||
| <!--  | <!--  --> | ||
| {{Rolfsen Knot Page| | {{Rolfsen Knot Page| | ||
| n = 10 | | n = 10 | | ||
| Line 44: | Line 44: | ||
| coloured_jones_5 = <math>q^{136}-q^{135}-3 q^{134}+4 q^{132}+5 q^{131}+6 q^{130}-7 q^{129}-22 q^{128}-13 q^{127}+12 q^{126}+40 q^{125}+39 q^{124}-7 q^{123}-70 q^{122}-86 q^{121}-12 q^{120}+105 q^{119}+144 q^{118}+53 q^{117}-117 q^{116}-225 q^{115}-123 q^{114}+133 q^{113}+288 q^{112}+196 q^{111}-99 q^{110}-349 q^{109}-284 q^{108}+74 q^{107}+378 q^{106}+342 q^{105}-17 q^{104}-387 q^{103}-397 q^{102}-17 q^{101}+375 q^{100}+414 q^{99}+60 q^{98}-360 q^{97}-424 q^{96}-76 q^{95}+335 q^{94}+414 q^{93}+94 q^{92}-314 q^{91}-404 q^{90}-100 q^{89}+291 q^{88}+385 q^{87}+112 q^{86}-261 q^{85}-368 q^{84}-130 q^{83}+228 q^{82}+350 q^{81}+145 q^{80}-179 q^{79}-322 q^{78}-176 q^{77}+130 q^{76}+293 q^{75}+186 q^{74}-66 q^{73}-240 q^{72}-210 q^{71}+11 q^{70}+191 q^{69}+192 q^{68}+49 q^{67}-120 q^{66}-180 q^{65}-81 q^{64}+61 q^{63}+128 q^{62}+102 q^{61}+q^{60}-88 q^{59}-87 q^{58}-31 q^{57}+24 q^{56}+67 q^{55}+49 q^{54}+q^{53}-25 q^{52}-31 q^{51}-35 q^{50}-2 q^{49}+18 q^{48}+21 q^{47}+21 q^{46}+15 q^{45}-19 q^{44}-24 q^{43}-19 q^{42}-6 q^{41}+14 q^{40}+28 q^{39}+10 q^{38}-3 q^{37}-16 q^{36}-18 q^{35}-5 q^{34}+13 q^{33}+9 q^{32}+8 q^{31}-q^{30}-9 q^{29}-7 q^{28}+4 q^{27}+q^{26}+3 q^{25}+3 q^{24}-2 q^{23}-3 q^{22}+2 q^{21}+q^{18}-q^{16}+q^{15}</math> | | coloured_jones_5 = <math>q^{136}-q^{135}-3 q^{134}+4 q^{132}+5 q^{131}+6 q^{130}-7 q^{129}-22 q^{128}-13 q^{127}+12 q^{126}+40 q^{125}+39 q^{124}-7 q^{123}-70 q^{122}-86 q^{121}-12 q^{120}+105 q^{119}+144 q^{118}+53 q^{117}-117 q^{116}-225 q^{115}-123 q^{114}+133 q^{113}+288 q^{112}+196 q^{111}-99 q^{110}-349 q^{109}-284 q^{108}+74 q^{107}+378 q^{106}+342 q^{105}-17 q^{104}-387 q^{103}-397 q^{102}-17 q^{101}+375 q^{100}+414 q^{99}+60 q^{98}-360 q^{97}-424 q^{96}-76 q^{95}+335 q^{94}+414 q^{93}+94 q^{92}-314 q^{91}-404 q^{90}-100 q^{89}+291 q^{88}+385 q^{87}+112 q^{86}-261 q^{85}-368 q^{84}-130 q^{83}+228 q^{82}+350 q^{81}+145 q^{80}-179 q^{79}-322 q^{78}-176 q^{77}+130 q^{76}+293 q^{75}+186 q^{74}-66 q^{73}-240 q^{72}-210 q^{71}+11 q^{70}+191 q^{69}+192 q^{68}+49 q^{67}-120 q^{66}-180 q^{65}-81 q^{64}+61 q^{63}+128 q^{62}+102 q^{61}+q^{60}-88 q^{59}-87 q^{58}-31 q^{57}+24 q^{56}+67 q^{55}+49 q^{54}+q^{53}-25 q^{52}-31 q^{51}-35 q^{50}-2 q^{49}+18 q^{48}+21 q^{47}+21 q^{46}+15 q^{45}-19 q^{44}-24 q^{43}-19 q^{42}-6 q^{41}+14 q^{40}+28 q^{39}+10 q^{38}-3 q^{37}-16 q^{36}-18 q^{35}-5 q^{34}+13 q^{33}+9 q^{32}+8 q^{31}-q^{30}-9 q^{29}-7 q^{28}+4 q^{27}+q^{26}+3 q^{25}+3 q^{24}-2 q^{23}-3 q^{22}+2 q^{21}+q^{18}-q^{16}+q^{15}</math> | | ||
| coloured_jones_6 = <math>q^{191}-2 q^{190}-q^{189}+2 q^{188}+q^{187}+q^{186}-2 q^{185}+7 q^{184}-5 q^{183}-9 q^{182}-q^{181}-4 q^{180}+q^{179}+5 q^{178}+41 q^{177}+13 q^{176}-15 q^{175}-32 q^{174}-61 q^{173}-58 q^{172}-3 q^{171}+144 q^{170}+138 q^{169}+75 q^{168}-45 q^{167}-211 q^{166}-296 q^{165}-171 q^{164}+224 q^{163}+406 q^{162}+406 q^{161}+146 q^{160}-324 q^{159}-706 q^{158}-618 q^{157}+67 q^{156}+622 q^{155}+896 q^{154}+618 q^{153}-183 q^{152}-1024 q^{151}-1173 q^{150}-351 q^{149}+570 q^{148}+1238 q^{147}+1131 q^{146}+177 q^{145}-1046 q^{144}-1516 q^{143}-763 q^{142}+320 q^{141}+1279 q^{140}+1408 q^{139}+497 q^{138}-881 q^{137}-1568 q^{136}-955 q^{135}+105 q^{134}+1157 q^{133}+1437 q^{132}+630 q^{131}-729 q^{130}-1483 q^{129}-962 q^{128}+11 q^{127}+1032 q^{126}+1365 q^{125}+647 q^{124}-627 q^{123}-1379 q^{122}-923 q^{121}-49 q^{120}+912 q^{119}+1280 q^{118}+670 q^{117}-485 q^{116}-1247 q^{115}-909 q^{114}-176 q^{113}+720 q^{112}+1173 q^{111}+749 q^{110}-234 q^{109}-1029 q^{108}-898 q^{107}-386 q^{106}+411 q^{105}+985 q^{104}+832 q^{103}+108 q^{102}-681 q^{101}-802 q^{100}-595 q^{99}+13 q^{98}+656 q^{97}+798 q^{96}+427 q^{95}-237 q^{94}-533 q^{93}-646 q^{92}-339 q^{91}+213 q^{90}+547 q^{89}+545 q^{88}+147 q^{87}-132 q^{86}-439 q^{85}-452 q^{84}-157 q^{83}+153 q^{82}+377 q^{81}+266 q^{80}+181 q^{79}-94 q^{78}-272 q^{77}-247 q^{76}-128 q^{75}+89 q^{74}+111 q^{73}+214 q^{72}+110 q^{71}-18 q^{70}-96 q^{69}-134 q^{68}-46 q^{67}-70 q^{66}+62 q^{65}+73 q^{64}+65 q^{63}+33 q^{62}-13 q^{61}+8 q^{60}-84 q^{59}-27 q^{58}-23 q^{57}+6 q^{56}+19 q^{55}+28 q^{54}+62 q^{53}-15 q^{52}-2 q^{51}-30 q^{50}-26 q^{49}-27 q^{48}-3 q^{47}+42 q^{46}+7 q^{45}+22 q^{44}-7 q^{42}-25 q^{41}-16 q^{40}+13 q^{39}-2 q^{38}+12 q^{37}+7 q^{36}+5 q^{35}-9 q^{34}-8 q^{33}+5 q^{32}-4 q^{31}+2 q^{30}+2 q^{29}+4 q^{28}-2 q^{27}-3 q^{26}+3 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | | coloured_jones_6 = <math>q^{191}-2 q^{190}-q^{189}+2 q^{188}+q^{187}+q^{186}-2 q^{185}+7 q^{184}-5 q^{183}-9 q^{182}-q^{181}-4 q^{180}+q^{179}+5 q^{178}+41 q^{177}+13 q^{176}-15 q^{175}-32 q^{174}-61 q^{173}-58 q^{172}-3 q^{171}+144 q^{170}+138 q^{169}+75 q^{168}-45 q^{167}-211 q^{166}-296 q^{165}-171 q^{164}+224 q^{163}+406 q^{162}+406 q^{161}+146 q^{160}-324 q^{159}-706 q^{158}-618 q^{157}+67 q^{156}+622 q^{155}+896 q^{154}+618 q^{153}-183 q^{152}-1024 q^{151}-1173 q^{150}-351 q^{149}+570 q^{148}+1238 q^{147}+1131 q^{146}+177 q^{145}-1046 q^{144}-1516 q^{143}-763 q^{142}+320 q^{141}+1279 q^{140}+1408 q^{139}+497 q^{138}-881 q^{137}-1568 q^{136}-955 q^{135}+105 q^{134}+1157 q^{133}+1437 q^{132}+630 q^{131}-729 q^{130}-1483 q^{129}-962 q^{128}+11 q^{127}+1032 q^{126}+1365 q^{125}+647 q^{124}-627 q^{123}-1379 q^{122}-923 q^{121}-49 q^{120}+912 q^{119}+1280 q^{118}+670 q^{117}-485 q^{116}-1247 q^{115}-909 q^{114}-176 q^{113}+720 q^{112}+1173 q^{111}+749 q^{110}-234 q^{109}-1029 q^{108}-898 q^{107}-386 q^{106}+411 q^{105}+985 q^{104}+832 q^{103}+108 q^{102}-681 q^{101}-802 q^{100}-595 q^{99}+13 q^{98}+656 q^{97}+798 q^{96}+427 q^{95}-237 q^{94}-533 q^{93}-646 q^{92}-339 q^{91}+213 q^{90}+547 q^{89}+545 q^{88}+147 q^{87}-132 q^{86}-439 q^{85}-452 q^{84}-157 q^{83}+153 q^{82}+377 q^{81}+266 q^{80}+181 q^{79}-94 q^{78}-272 q^{77}-247 q^{76}-128 q^{75}+89 q^{74}+111 q^{73}+214 q^{72}+110 q^{71}-18 q^{70}-96 q^{69}-134 q^{68}-46 q^{67}-70 q^{66}+62 q^{65}+73 q^{64}+65 q^{63}+33 q^{62}-13 q^{61}+8 q^{60}-84 q^{59}-27 q^{58}-23 q^{57}+6 q^{56}+19 q^{55}+28 q^{54}+62 q^{53}-15 q^{52}-2 q^{51}-30 q^{50}-26 q^{49}-27 q^{48}-3 q^{47}+42 q^{46}+7 q^{45}+22 q^{44}-7 q^{42}-25 q^{41}-16 q^{40}+13 q^{39}-2 q^{38}+12 q^{37}+7 q^{36}+5 q^{35}-9 q^{34}-8 q^{33}+5 q^{32}-4 q^{31}+2 q^{30}+2 q^{29}+4 q^{28}-2 q^{27}-3 q^{26}+3 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | | ||
| coloured_jones_7 =  | coloured_jones_7 =  | | ||
| computer_talk =  | computer_talk =  | ||
|          <table> |          <table> | ||
| Line 51: | Line 51: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |          <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> | ||
|          </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 134]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12],  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 134]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12],  | |||
|   X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20],  |   X[13, 7, 14, 6], X[11, 19, 12, 18], X[15, 1, 16, 20],  | ||
|   X[19, 17, 20, 16], X[17, 11, 18, 10], X[2, 8, 3, 7]]</nowiki></ |   X[19, 17, 20, 16], X[17, 11, 18, 10], X[2, 8, 3, 7]]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 134]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9,  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 134]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9,  | |||
|   6, -8, 7]</nowiki></ |   6, -8, 7]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 134]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, -14, -18, -6, -20, -10, -16]</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 134]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | |||
| < | <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> | ||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, -14, -18, -6, -20, -10, -16]</nowiki></code></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 134]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_134_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 134]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, 1, 1, 2, 3, -2, 3, 3}]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 134]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 134]]]</nowiki></code></td></tr> | |||
| <tr align=left><td></td><td>[[Image:10_134_ML.gif]]</td></tr><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 134]]&) /@ { | |||
|                     SymmetryType, UnknottingNumber, ThreeGenus, |                     SymmetryType, UnknottingNumber, ThreeGenus, | ||
|                     BridgeIndex, SuperBridgeIndex, NakanishiIndex |                     BridgeIndex, SuperBridgeIndex, NakanishiIndex | ||
|                    }</nowiki></ |                    }</nowiki></code></td></tr> | ||
| <tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 134]][t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     2    4    4            2      3 | |||
| -3 + -- - -- + - + 4 t - 4 t  + 2 t | -3 + -- - -- + - + 4 t - 4 t  + 2 t | ||
|       3    2   t |       3    2   t | ||
|      t    t</nowiki></ |      t    t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 134]][z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> | |||
| 1 + 6 z  + 8 z  + 2 z</nowiki></pre></td></tr> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 134]][z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 134]}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       2      4      6 | |||
| 1 + 6 z  + 8 z  + 2 z</nowiki></code></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 134]][q]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3    4      5      6      7      8      9      10    11 | |||
|          <table><tr align=left> | |||
| q  - q  + 3 q  - 3 q  + 4 q  - 4 q  + 3 q  - 3 q   + q</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 134]][q]</nowiki></pre></td></tr> | |||
| < | <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> | ||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 134]}</nowiki></code></td></tr> | |||
| q   + 2 q   + q   + 2 q   + q   + q   - 2 q   - q   - 2 q   - q   + q</nowiki></pre></td></tr> | |||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 134]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                     2      2      2    4       4      4    6    6 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 134]], KnotSignature[Knot[10, 134]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{23, 6}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 134]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3    4      5      6      7      8      9      10    11 | |||
| q  - q  + 3 q  - 3 q  + 4 q  - 4 q  + 3 q  - 3 q   + q</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 134]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 134]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10      14    16      18    20    24      26    28      30    32    38 | |||
| q   + 2 q   + q   + 2 q   + q   + q   - 2 q   - q   - 2 q   - q   + q</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 134]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                     2      2      2    4       4      4    6    6 | |||
|  -12    3    3    4 z    3 z    7 z    z     4 z    5 z    z    z |  -12    3    3    4 z    3 z    7 z    z     4 z    5 z    z    z | ||
| a    - --- + -- - ---- + ---- + ---- - --- + ---- + ---- + -- + -- | a    - --- + -- - ---- + ---- + ---- - --- + ---- + ---- + -- + -- | ||
|         10    6    10      8      6     10     8      6     8    6 |         10    6    10      8      6     10     8      6     8    6 | ||
|        a     a    a       a      a     a      a      a     a    a</nowiki></ |        a     a    a       a      a     a      a      a     a    a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 134]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                           2     2       2      2 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 134]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                           2     2       2      2 | |||
|  -12    3    3    2 z   8 z   4 z   2 z   z     z     7 z    7 z |  -12    3    3    2 z   8 z   4 z   2 z   z     z     7 z    7 z | ||
| a    + --- - -- - --- - --- - --- + --- + --- + --- - ---- + ---- +  | a    + --- - -- - --- - --- - --- + --- + --- + --- - ---- + ---- +  | ||
| Line 119: | Line 205: | ||
|   --- - ---- - ---- + -- + ---- + ---- + -- + --- + -- |   --- - ---- - ---- + -- + ---- + ---- + -- + --- + -- | ||
|    12    10      8     6    11      9     7    10    8 |    12    10      8     6    11      9     7    10    8 | ||
|   a     a       a     a    a       a     a    a     a</nowiki></ |   a     a       a     a    a       a     a    a     a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 134]], Vassiliev[3][Knot[10, 134]]}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 13}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 134]], Vassiliev[3][Knot[10, 134]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, 13}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 134]][q, t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5    7    7        9  2    11  2    11  3      13  3      13  4 | |||
| q  + q  + q  t + 2 q  t  + q   t  + q   t  + 2 q   t  + 3 q   t  +  | q  + q  + q  t + 2 q  t  + q   t  + q   t  + 2 q   t  + 3 q   t  +  | ||
| Line 130: | Line 226: | ||
|    23  8 |    23  8 | ||
|   q   t</nowiki></ |   q   t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 134], 2][q]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6    7      9      10      11      12      13      14       15 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 134], 2][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6    7      9      10      11      12      13      14       15 | |||
| q  - q  + 4 q  - 3 q   - 3 q   + 9 q   - 3 q   - 8 q   + 10 q   -  | q  - q  + 4 q  - 3 q   - 3 q   + 9 q   - 3 q   - 8 q   + 10 q   -  | ||
| Line 139: | Line 240: | ||
|      25      26    27      28    29 |      25      26    27      28    29 | ||
|   6 q   - 6 q   + q   + 2 q   - q</nowiki></ |   6 q   - 6 q   + q   + 2 q   - q</nowiki></code></td></tr> | ||
| </table>  }} | |||
Latest revision as of 18:03, 1 September 2005
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 10 134's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
Knot presentations
| Planar diagram presentation | X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X2837 | 
| Gauss code | 1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7 | 
| Dowker-Thistlethwaite code | 4 8 -12 2 -14 -18 -6 -20 -10 -16 | 
| Conway Notation | [221,3,2-] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
| 
 Length is 11, width is 4, Braid index is 4 |   |  [{4, 12}, {3, 5}, {1, 4}, {6, 10}, {5, 8}, {2, 6}, {12, 3}, {11, 9}, {10, 7}, {8, 2}, {7, 11}, {9, 1}] | 
[edit Notes on presentations of 10 134]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 134"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X2837 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | 1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 4 8 -12 2 -14 -18 -6 -20 -10 -16 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [221,3,2-] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 4, 11, 4 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{4, 12}, {3, 5}, {1, 4}, {6, 10}, {5, 8}, {2, 6}, {12, 3}, {11, 9}, {10, 7}, {8, 2}, {7, 11}, {9, 1}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 134"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 23, 6 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 134"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (6, 13) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 







