T(7,4)
[[Image:T(10,3).{{{ext}}}|80px|link=T(10,3)]] |
[[Image:T(21,2).{{{ext}}}|80px|link=T(21,2)]] |
Visit T(7,4)'s page at Knotilus!
Visit T(7,4)'s page at the original Knot Atlas! |
T(7,4) Further Notes and Views
Knot presentations
Planar diagram presentation | X9,41,10,40 X20,42,21,41 X31,1,32,42 X21,11,22,10 X32,12,33,11 X1,13,2,12 X33,23,34,22 X2,24,3,23 X13,25,14,24 X3,35,4,34 X14,36,15,35 X25,37,26,36 X15,5,16,4 X26,6,27,5 X37,7,38,6 X27,17,28,16 X38,18,39,17 X7,19,8,18 X39,29,40,28 X8,30,9,29 X19,31,20,30 |
Gauss code | {-6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5, -7, 10, 11, 12, -15, -17, -19, 1, 2, 3} |
Dowker-Thistlethwaite code | 12 34 -26 18 40 -32 24 4 -38 30 10 -2 36 16 -8 42 22 -14 6 28 -20 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(7,4)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 140} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(7,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | χ | |||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||
37 | 1 | -1 | ||||||||||||||||||||||
35 | 2 | 1 | -1 | |||||||||||||||||||||
33 | 2 | 1 | -1 | |||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||
29 | 1 | 1 | 2 | 0 | ||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||
25 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||
19 | 1 | 1 | ||||||||||||||||||||||
17 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[7, 4]] |
Out[2]= | 21 |
In[3]:= | PD[TorusKnot[7, 4]] |
Out[3]= | PD[X[9, 41, 10, 40], X[20, 42, 21, 41], X[31, 1, 32, 42],X[21, 11, 22, 10], X[32, 12, 33, 11], X[1, 13, 2, 12], X[33, 23, 34, 22], X[2, 24, 3, 23], X[13, 25, 14, 24], X[3, 35, 4, 34], X[14, 36, 15, 35], X[25, 37, 26, 36], X[15, 5, 16, 4], X[26, 6, 27, 5], X[37, 7, 38, 6], X[27, 17, 28, 16], X[38, 18, 39, 17], X[7, 19, 8, 18], X[39, 29, 40, 28],X[8, 30, 9, 29], X[19, 31, 20, 30]] |
In[4]:= | GaussCode[TorusKnot[7, 4]] |
Out[4]= | GaussCode[-6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13,16, 17, 18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5,-7, 10, 11, 12, -15, -17, -19, 1, 2, 3] |
In[5]:= | BR[TorusKnot[7, 4]] |
Out[5]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[6]:= | alex = Alexander[TorusKnot[7, 4]][t] |
Out[6]= | -9 -8 -5 -4 -2 2 4 5 8 9 -1 + t - t + t - t + t + t - t + t - t + t |
In[7]:= | Conway[TorusKnot[7, 4]][z] |
Out[7]= | 2 4 6 8 10 12 14 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 4]], KnotSignature[TorusKnot[7, 4]]} |
Out[9]= | {7, 14} |
In[10]:= | J=Jones[TorusKnot[7, 4]][q] |
Out[10]= | 9 11 13 14 15 16 18 q + q + q - q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 4]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[7, 4]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[7, 4]], Vassiliev[3][TorusKnot[7, 4]]} |
Out[14]= | {0, 140} |
In[15]:= | Kh[TorusKnot[7, 4]][q, t] |
Out[15]= | 17 19 21 2 25 3 23 4 25 4 27 5 29 5 |